A Stepwise decision tree model for differential diagnosis of Kimura's disease in the head and neck.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2025-03-17 DOI:10.1186/s12880-025-01618-z
Rui Luo, Gongxin Yang, Huimin Shi, Yining He, Yongshun Han, Zhen Tian, Yingwei Wu
{"title":"A Stepwise decision tree model for differential diagnosis of Kimura's disease in the head and neck.","authors":"Rui Luo, Gongxin Yang, Huimin Shi, Yining He, Yongshun Han, Zhen Tian, Yingwei Wu","doi":"10.1186/s12880-025-01618-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to differentiate Kimura's disease (KD) from Sjogren's syndrome with mucosa-associated lymphoid tissue lymphoma (SS&MALT), neurofibromatosis (NF), and lymphoma in the head and neck by using a stepwise decision tree approach.</p><p><strong>Materials and methods: </strong>A retrospective analysis of 202 patients with pathologically confirmed KD, SS&MALT, NF, or lymphoma was conducted. Demographic and magnetic resonance imaging (MRI) data were collected, with qualitative features (e.g., skin thickening, lesion morphology, lymphadenopathy, MRI signal intensity) and quantitative variables (e.g., age, lesion size, apparent diffusion coefficients (ADCs), wash-in rate, time to peak (TTP), time-signal intensity curve (TIC) patterns) examined. A stepwise decision-tree model using the classification and regression trees (CART) algorithm was developed to aid in the differential diagnosis of KD in the head and neck. The model's diagnostic accuracy and misclassification risk were assessed to evaluate its reliability and effectiveness.</p><p><strong>Results: </strong>Key characteristics for KD included male predominance (91.7%), frequent lymphadenopathy (86.1%), and skin thickening (72.2%). Primary lesions of NF typically exhibited higher ADCs compared to those of KD, SS&MALT, and lymphoma. In lymphadenopathy, however, unique ADC patterns were observed: in KD, the ADCs of lymphadenopathy were lower than those of primary lesions, whereas in lymphoma, the ADCs of lymphadenopathy were comparable to those of primary lesions. Predictors for distinguishing KD included lesion's location, ADCs, lymphadenopathy, and sizes (all p < 0.001). The decision-tree model achieved an impressive 99.0% accuracy in the differential diagnosis across the overall cohort, with a 10-fold cross-validated misclassification risk of 0.079 ± 0.024.</p><p><strong>Conclusion: </strong>The stepwise decision tree model, based on MRI features, showed high accuracy in differentiating KD from other head and neck diseases, offering a reliable diagnostic tool in clinical practice.</p><p><strong>Clinical relevance: </strong>KD is characterized by male predominance, skin thickening, and high incidence of lymphadenopathy. ADCs and TIC patterns are distinguishable in differentiating KD from SS&MALT, NF, and lymphoma in the head and neck. The decision tree model enhances the understanding of KD imaging features and facilitates accurate KD diagnosis, offering an easily accessible and convenient diagnostic tool for radiologists and physicians in daily practice and guiding tailored clinical management plans for affected patients.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"90"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01618-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study aims to differentiate Kimura's disease (KD) from Sjogren's syndrome with mucosa-associated lymphoid tissue lymphoma (SS&MALT), neurofibromatosis (NF), and lymphoma in the head and neck by using a stepwise decision tree approach.

Materials and methods: A retrospective analysis of 202 patients with pathologically confirmed KD, SS&MALT, NF, or lymphoma was conducted. Demographic and magnetic resonance imaging (MRI) data were collected, with qualitative features (e.g., skin thickening, lesion morphology, lymphadenopathy, MRI signal intensity) and quantitative variables (e.g., age, lesion size, apparent diffusion coefficients (ADCs), wash-in rate, time to peak (TTP), time-signal intensity curve (TIC) patterns) examined. A stepwise decision-tree model using the classification and regression trees (CART) algorithm was developed to aid in the differential diagnosis of KD in the head and neck. The model's diagnostic accuracy and misclassification risk were assessed to evaluate its reliability and effectiveness.

Results: Key characteristics for KD included male predominance (91.7%), frequent lymphadenopathy (86.1%), and skin thickening (72.2%). Primary lesions of NF typically exhibited higher ADCs compared to those of KD, SS&MALT, and lymphoma. In lymphadenopathy, however, unique ADC patterns were observed: in KD, the ADCs of lymphadenopathy were lower than those of primary lesions, whereas in lymphoma, the ADCs of lymphadenopathy were comparable to those of primary lesions. Predictors for distinguishing KD included lesion's location, ADCs, lymphadenopathy, and sizes (all p < 0.001). The decision-tree model achieved an impressive 99.0% accuracy in the differential diagnosis across the overall cohort, with a 10-fold cross-validated misclassification risk of 0.079 ± 0.024.

Conclusion: The stepwise decision tree model, based on MRI features, showed high accuracy in differentiating KD from other head and neck diseases, offering a reliable diagnostic tool in clinical practice.

Clinical relevance: KD is characterized by male predominance, skin thickening, and high incidence of lymphadenopathy. ADCs and TIC patterns are distinguishable in differentiating KD from SS&MALT, NF, and lymphoma in the head and neck. The decision tree model enhances the understanding of KD imaging features and facilitates accurate KD diagnosis, offering an easily accessible and convenient diagnostic tool for radiologists and physicians in daily practice and guiding tailored clinical management plans for affected patients.

Clinical trial number: Not applicable.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
A Stepwise decision tree model for differential diagnosis of Kimura's disease in the head and neck. Combining artificial intelligence assisted image segmentation and ultrasound based radiomics for the prediction of carotid plaque stability. Morphological characterization of atypical pancreatic ductal adenocarcinoma with cystic lesion on DCE-CT: a comprehensive retrospective study. AI-ready rectal cancer MR imaging: a workflow for tumor detection and segmentation. Deep learning-based evaluation of panoramic radiographs for osteoporosis screening: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1