Samply Stream API: The AI-enhanced method for real-time event data streaming.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Behavior Research Methods Pub Date : 2025-03-17 DOI:10.3758/s13428-025-02634-1
Yury Shevchenko, Ulf-Dietrich Reips
{"title":"Samply Stream API: The AI-enhanced method for real-time event data streaming.","authors":"Yury Shevchenko, Ulf-Dietrich Reips","doi":"10.3758/s13428-025-02634-1","DOIUrl":null,"url":null,"abstract":"<p><p>This manuscript introduces a novel method for conducting behavioral and social research by streaming real-time information to participants and manipulating content for experimental purposes via AI. We present an extension of the Samply software, which facilitates the integration of event-related data with mobile surveys and experiments. To assess the feasibility of this method, we conducted an experiment where news headlines were modified by a Chat-GPT algorithm and streamed to participants via the Samply Stream API and mobile push notifications. Feedback from participants indicated that most did not experience technical problems. There was no significant difference in readability across original, paraphrased, and misinformation-injected news conditions, with only 1.2% of all news items reported as unreadable. Participants reported significantly less familiarity with misinformation-injected news (84% unfamiliarity) compared to original and paraphrased news (73% unfamiliarity), suggesting successful manipulation of information without compromising readability. Dropout and non-response rates were comparable to those in other experience sampling studies. The streaming method offers significant potential for various applications, including public opinion research, healthcare, marketing, and environmental monitoring. By enabling the real-time collection of contextually relevant data, this method has the potential to enhance the external validity of behavioral research and provides a powerful tool for studying human behavior in naturalistic settings.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 4","pages":"119"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02634-1","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript introduces a novel method for conducting behavioral and social research by streaming real-time information to participants and manipulating content for experimental purposes via AI. We present an extension of the Samply software, which facilitates the integration of event-related data with mobile surveys and experiments. To assess the feasibility of this method, we conducted an experiment where news headlines were modified by a Chat-GPT algorithm and streamed to participants via the Samply Stream API and mobile push notifications. Feedback from participants indicated that most did not experience technical problems. There was no significant difference in readability across original, paraphrased, and misinformation-injected news conditions, with only 1.2% of all news items reported as unreadable. Participants reported significantly less familiarity with misinformation-injected news (84% unfamiliarity) compared to original and paraphrased news (73% unfamiliarity), suggesting successful manipulation of information without compromising readability. Dropout and non-response rates were comparable to those in other experience sampling studies. The streaming method offers significant potential for various applications, including public opinion research, healthcare, marketing, and environmental monitoring. By enabling the real-time collection of contextually relevant data, this method has the potential to enhance the external validity of behavioral research and provides a powerful tool for studying human behavior in naturalistic settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Samply Stream API:实时事件数据流的人工智能增强方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
期刊最新文献
Appropriate modeling of endogeneity in cross-lagged models: Efficacy of auxiliary and model-implied instrumental variables. What you see is not what you get: Observed scale score comparisons misestimate true group differences. Ready to ROC? A tutorial on simulation-based power analyses for null hypothesis significance, minimum-effect, and equivalence testing for ROC curve analyses. Performance of location-scale models in meta-analysis: A simulation study. Samply Stream API: The AI-enhanced method for real-time event data streaming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1