Synergistic Antifungal Activity of PIT and ITZ Against Varied Aspergillus Species via Affecting The Ergosterol Content and Intracellular Drug Retention.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Current Microbiology Pub Date : 2025-03-17 DOI:10.1007/s00284-025-04150-z
Renhui Cai, Cong He, Qingtao Kong, Ling Lu, Hong Sang
{"title":"Synergistic Antifungal Activity of PIT and ITZ Against Varied Aspergillus Species via Affecting The Ergosterol Content and Intracellular Drug Retention.","authors":"Renhui Cai, Cong He, Qingtao Kong, Ling Lu, Hong Sang","doi":"10.1007/s00284-025-04150-z","DOIUrl":null,"url":null,"abstract":"<p><p>Aspergillus species are a significant cause of aspergillosis, with invasive pulmonary aspergillosis (IPA) being particularly severe and often fatal. The increasing resistance to azole antifungals and limited treatment options highlight the need for new therapeutic strategies. This study explores the synergistic effects of pitavastatin (PIT), a statin, combined with itraconazole (ITZ) against various Aspergillus species. In vitro assessments included plate inoculation, liquid medium incubation, and microscopic observation of spore germination, alongside ergosterol content analysis, intracellular itraconazole retention, and rhodamine 6G (Rh6G) uptake and efflux assays. The PIT and ITZ combination exhibited significant synergistic antifungal activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus fumigatus. The synergistic mechanism was attributed to decreased ergosterol levels, increased intracellular itraconazole retention, reduced spore germination, and abnormal hyphal formation in fungal cells. An in vivo Galleria mellonella infectious model demonstrated reduced mortality in larvae treated with the drug combination compared to those treated with ITZ alone. These findings suggest that the PIT and ITZ combination enhances antifungal effects against Aspergillus species, potentially offering a novel therapeutic strategy for IPA treatment. Further clinical trials are warranted to explore the potential of this drug combination in treating aspergillosis.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 5","pages":"198"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04150-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aspergillus species are a significant cause of aspergillosis, with invasive pulmonary aspergillosis (IPA) being particularly severe and often fatal. The increasing resistance to azole antifungals and limited treatment options highlight the need for new therapeutic strategies. This study explores the synergistic effects of pitavastatin (PIT), a statin, combined with itraconazole (ITZ) against various Aspergillus species. In vitro assessments included plate inoculation, liquid medium incubation, and microscopic observation of spore germination, alongside ergosterol content analysis, intracellular itraconazole retention, and rhodamine 6G (Rh6G) uptake and efflux assays. The PIT and ITZ combination exhibited significant synergistic antifungal activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus fumigatus. The synergistic mechanism was attributed to decreased ergosterol levels, increased intracellular itraconazole retention, reduced spore germination, and abnormal hyphal formation in fungal cells. An in vivo Galleria mellonella infectious model demonstrated reduced mortality in larvae treated with the drug combination compared to those treated with ITZ alone. These findings suggest that the PIT and ITZ combination enhances antifungal effects against Aspergillus species, potentially offering a novel therapeutic strategy for IPA treatment. Further clinical trials are warranted to explore the potential of this drug combination in treating aspergillosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
期刊最新文献
Synergistic Antifungal Activity of PIT and ITZ Against Varied Aspergillus Species via Affecting The Ergosterol Content and Intracellular Drug Retention. Characterization of Different Soil Bacterial Strains and Assessment of Their Impact on the Growth of Triticum turgidum spp. durum and Lens culinaris spp. culinaris. Meridianimarinicoccus marinus sp. nov., Isolated from Tidal Flat. Thioclava kandeliae sp. nov., Isolated from the Rhizosphere Soil of Mangrove Plant Kandelia candel. Decontamination of Sewage Wastewater by an Aeration Method Utilizing Water Hardness-Reducing Spirulina platensis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1