Simultaneous 3D quantitative magnetization transfer imaging and susceptibility mapping.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance in Medicine Pub Date : 2025-03-17 DOI:10.1002/mrm.30493
Albert Jang, Kwok-Shing Chan, Azma Mareyam, Jason Stockmann, Susie Yi Huang, Nian Wang, Hyungseok Jang, Hong-Hsi Lee, Fang Liu
{"title":"Simultaneous 3D quantitative magnetization transfer imaging and susceptibility mapping.","authors":"Albert Jang, Kwok-Shing Chan, Azma Mareyam, Jason Stockmann, Susie Yi Huang, Nian Wang, Hyungseok Jang, Hong-Hsi Lee, Fang Liu","doi":"10.1002/mrm.30493","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Introduce a unified acquisition and modeling strategy to simultaneously quantify magnetization transfer (MT), tissue susceptibility ( <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> ) and <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\ast } $$</annotation></semantics> </math> .</p><p><strong>Theory and methods: </strong>Magnetization transfer is induced through the application of off-resonance irradiation between excitation and acquisition of an RF-spoiled gradient-echo scheme, where free pool spin-lattice relaxation ( <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>1</mn> <mi>F</mi></msubsup> </mrow> <annotation>$$ {T}_1^{\\mathrm{F}} $$</annotation></semantics> </math> ), macromolecular proton fraction ( <math> <semantics><mrow><mi>f</mi></mrow> <annotation>$$ f $$</annotation></semantics> </math> ) and magnetization exchange rate ( <math> <semantics> <mrow><msub><mi>k</mi> <mi>F</mi></msub> </mrow> <annotation>$$ {k}_{\\mathrm{F}} $$</annotation></semantics> </math> ) were calculated by modeling the magnitude of the MR signal using a binary spin-bath MT model with <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {B}_1^{+} $$</annotation></semantics> </math> inhomogeneity correction via Bloch-Siegert shift. Simultaneously, a multi-echo acquisition is incorporated into this framework to measure the time evolution of both signal magnitude and phase, which was further modeled for estimating <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\ast } $$</annotation></semantics> </math> and tissue susceptibility. In this work, we demonstrate the feasibility of this new acquisition and modeling strategy in vivo on the brain tissue.</p><p><strong>Results: </strong>In vivo brain experiments were conducted on five healthy subjects to validate our method. Utilizing an analytically derived signal model, we simultaneously obtained 3D <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>1</mn> <mi>F</mi></msubsup> </mrow> <annotation>$$ {T}_1^{\\mathrm{F}} $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>f</mi></mrow> <annotation>$$ f $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>k</mi> <mi>F</mi></msub> </mrow> <annotation>$$ {k}_{\\mathrm{F}} $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> and <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\ast } $$</annotation></semantics> </math> maps of the whole brain. Our results from the brain regional analysis show good agreement with those previously reported in the literature, which used separate MT and QSM methods.</p><p><strong>Conclusion: </strong>A unified acquisition and modeling strategy based on an analytical signal model that fully leverages both the magnitude and phase of the acquired signals was demonstrated and validated for simultaneous MT, susceptibility and <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\ast } $$</annotation></semantics> </math> quantification that are free from <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {B}_1^{+} $$</annotation></semantics> </math> bias.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30493","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Introduce a unified acquisition and modeling strategy to simultaneously quantify magnetization transfer (MT), tissue susceptibility ( χ $$ \chi $$ ) and T 2 * $$ {T}_2^{\ast } $$ .

Theory and methods: Magnetization transfer is induced through the application of off-resonance irradiation between excitation and acquisition of an RF-spoiled gradient-echo scheme, where free pool spin-lattice relaxation ( T 1 F $$ {T}_1^{\mathrm{F}} $$ ), macromolecular proton fraction ( f $$ f $$ ) and magnetization exchange rate ( k F $$ {k}_{\mathrm{F}} $$ ) were calculated by modeling the magnitude of the MR signal using a binary spin-bath MT model with B 1 + $$ {B}_1^{+} $$ inhomogeneity correction via Bloch-Siegert shift. Simultaneously, a multi-echo acquisition is incorporated into this framework to measure the time evolution of both signal magnitude and phase, which was further modeled for estimating T 2 * $$ {T}_2^{\ast } $$ and tissue susceptibility. In this work, we demonstrate the feasibility of this new acquisition and modeling strategy in vivo on the brain tissue.

Results: In vivo brain experiments were conducted on five healthy subjects to validate our method. Utilizing an analytically derived signal model, we simultaneously obtained 3D T 1 F $$ {T}_1^{\mathrm{F}} $$ , f $$ f $$ , k F $$ {k}_{\mathrm{F}} $$ , χ $$ \chi $$ and T 2 * $$ {T}_2^{\ast } $$ maps of the whole brain. Our results from the brain regional analysis show good agreement with those previously reported in the literature, which used separate MT and QSM methods.

Conclusion: A unified acquisition and modeling strategy based on an analytical signal model that fully leverages both the magnitude and phase of the acquired signals was demonstrated and validated for simultaneous MT, susceptibility and T 2 * $$ {T}_2^{\ast } $$ quantification that are free from B 1 + $$ {B}_1^{+} $$ bias.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
期刊最新文献
Improving fat saturation robustness in outer extremity MRI with a local shim coil insert. Feasibility of magnetic resonance elastography in the healthy rat heart. Gradient system characterization of a 1.5 T MR-Linac with application to 4D UTE imaging for adaptive MR-guided radiotherapy of lung cancer. Referenceless 4D flow MRI using radial balanced SSFP at 0.6 T. Simultaneous 3D quantitative magnetization transfer imaging and susceptibility mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1