Thomas J Zega, Jane Y Howe, Devin L Schrader, James Sagar, Philippe Pinard, Sam Marks
{"title":"Mass-Thickness Measurements in the Transmission Electron Microscope: A Single-Standard Approach to Quantitative EDS Analysis.","authors":"Thomas J Zega, Jane Y Howe, Devin L Schrader, James Sagar, Philippe Pinard, Sam Marks","doi":"10.1093/mam/ozaf005","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative compositional analysis with energy-dispersive X-ray spectroscopy (EDS) in the scanning transmission electron microscope (STEM) is an important tool for materials science. Here, we test a single-standard approach to quantitative EDS on focused ion beam (FIB) sections of SrTiO3, CaTiO3, and Fe sulfides. We confirm previous reports that shadowing of X-rays is an important factor to consider in robust quantitative analysis and should be mapped out to optimize signal collection. Our data show that the orientation of the half grids used in FIB sample preparation can be adjusted in the transmission electron microscope sample holder to provide optimum line-of-sight from the sample to the EDS detector, minimizing X-ray occlusion. A precision of 2% can be achieved when comparing EDS data in the STEM to quantitative wavelength-dispersive spectrometry in the electron microprobe. These results yield accuracies within 5% of stoichiometric composition for an optimized analytical geometry.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":"31 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozaf005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantitative compositional analysis with energy-dispersive X-ray spectroscopy (EDS) in the scanning transmission electron microscope (STEM) is an important tool for materials science. Here, we test a single-standard approach to quantitative EDS on focused ion beam (FIB) sections of SrTiO3, CaTiO3, and Fe sulfides. We confirm previous reports that shadowing of X-rays is an important factor to consider in robust quantitative analysis and should be mapped out to optimize signal collection. Our data show that the orientation of the half grids used in FIB sample preparation can be adjusted in the transmission electron microscope sample holder to provide optimum line-of-sight from the sample to the EDS detector, minimizing X-ray occlusion. A precision of 2% can be achieved when comparing EDS data in the STEM to quantitative wavelength-dispersive spectrometry in the electron microprobe. These results yield accuracies within 5% of stoichiometric composition for an optimized analytical geometry.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.