Mass-Thickness Measurements in the Transmission Electron Microscope: A Single-Standard Approach to Quantitative EDS Analysis.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Microscopy and Microanalysis Pub Date : 2025-03-17 DOI:10.1093/mam/ozaf005
Thomas J Zega, Jane Y Howe, Devin L Schrader, James Sagar, Philippe Pinard, Sam Marks
{"title":"Mass-Thickness Measurements in the Transmission Electron Microscope: A Single-Standard Approach to Quantitative EDS Analysis.","authors":"Thomas J Zega, Jane Y Howe, Devin L Schrader, James Sagar, Philippe Pinard, Sam Marks","doi":"10.1093/mam/ozaf005","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative compositional analysis with energy-dispersive X-ray spectroscopy (EDS) in the scanning transmission electron microscope (STEM) is an important tool for materials science. Here, we test a single-standard approach to quantitative EDS on focused ion beam (FIB) sections of SrTiO3, CaTiO3, and Fe sulfides. We confirm previous reports that shadowing of X-rays is an important factor to consider in robust quantitative analysis and should be mapped out to optimize signal collection. Our data show that the orientation of the half grids used in FIB sample preparation can be adjusted in the transmission electron microscope sample holder to provide optimum line-of-sight from the sample to the EDS detector, minimizing X-ray occlusion. A precision of 2% can be achieved when comparing EDS data in the STEM to quantitative wavelength-dispersive spectrometry in the electron microprobe. These results yield accuracies within 5% of stoichiometric composition for an optimized analytical geometry.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":"31 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozaf005","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative compositional analysis with energy-dispersive X-ray spectroscopy (EDS) in the scanning transmission electron microscope (STEM) is an important tool for materials science. Here, we test a single-standard approach to quantitative EDS on focused ion beam (FIB) sections of SrTiO3, CaTiO3, and Fe sulfides. We confirm previous reports that shadowing of X-rays is an important factor to consider in robust quantitative analysis and should be mapped out to optimize signal collection. Our data show that the orientation of the half grids used in FIB sample preparation can be adjusted in the transmission electron microscope sample holder to provide optimum line-of-sight from the sample to the EDS detector, minimizing X-ray occlusion. A precision of 2% can be achieved when comparing EDS data in the STEM to quantitative wavelength-dispersive spectrometry in the electron microprobe. These results yield accuracies within 5% of stoichiometric composition for an optimized analytical geometry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
期刊最新文献
Effect of Dynamic Reconstruction on Particle Size and Morphology in Atom Probe Tomography. Mass-Thickness Measurements in the Transmission Electron Microscope: A Single-Standard Approach to Quantitative EDS Analysis. Quantifying Patterned Features on Material Surfaces Created using Ga Ion Beam in FIB-SEM. The Role of the CXCL12/CXCR4 Signaling Pathway in Regulating Cellular Migration. How Cryo-EM Revolutionized the Field of Bioenergetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1