Jeroen G Rook, Carolin Benjamins, Jakob Bossek, Heike Trautmann, Holger H Hoos, Marius Lindauer
{"title":"MO-SMAC: Multi-objective Sequential Model-based Algorithm Configuration.","authors":"Jeroen G Rook, Carolin Benjamins, Jakob Bossek, Heike Trautmann, Holger H Hoos, Marius Lindauer","doi":"10.1162/evco_a_00371","DOIUrl":null,"url":null,"abstract":"<p><p>Automated algorithm configuration aims at finding well-performing parameter configurations for a given problem, and it has proven to be effective within many AI domains, including evolutionary computation. Initially, the focus was on excelling in one performance objective, but, in reality, most tasks have a variety of (conflicting) objectives. The surging demand for trustworthy and resource-efficient AI systems makes this multi-objective perspective even more prevalent. We propose a new general-purpose multi-objective automated algorithm configurator by extending the widely-used SMAC framework. Instead of finding a single configuration, we search for a non-dominated set that approximates the actual Pareto set. We propose a pure multi-objective Bayesian Optimisation approach for obtaining promising configurations by using the predicted hypervolume improvement as acquisition function. We also present a novel intensification procedure to efficiently handle the selection of configurations in a multi-objective context. Our approach is empirically validated and compared across various configuration scenarios in four AI domains, demonstrating superiority over baseline methods, competitiveness with MO-ParamILS on individual scenarios and an overall best performance.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-25"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00371","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Automated algorithm configuration aims at finding well-performing parameter configurations for a given problem, and it has proven to be effective within many AI domains, including evolutionary computation. Initially, the focus was on excelling in one performance objective, but, in reality, most tasks have a variety of (conflicting) objectives. The surging demand for trustworthy and resource-efficient AI systems makes this multi-objective perspective even more prevalent. We propose a new general-purpose multi-objective automated algorithm configurator by extending the widely-used SMAC framework. Instead of finding a single configuration, we search for a non-dominated set that approximates the actual Pareto set. We propose a pure multi-objective Bayesian Optimisation approach for obtaining promising configurations by using the predicted hypervolume improvement as acquisition function. We also present a novel intensification procedure to efficiently handle the selection of configurations in a multi-objective context. Our approach is empirically validated and compared across various configuration scenarios in four AI domains, demonstrating superiority over baseline methods, competitiveness with MO-ParamILS on individual scenarios and an overall best performance.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.