{"title":"Solving Many-objective Optimization Problems based on PF Shape Classification and Vector Angle Selection.","authors":"Y T Wu, F Z Ge, D B Chen, L Shi","doi":"10.1162/evco_a_00373","DOIUrl":null,"url":null,"abstract":"<p><p>Most many-objective optimization algorithms (MaOEAs) adopt a pre-assumed Pareto front (PF) shape, instead of the true PF shape, to balance convergence and diversity in high-dimensional objective space, resulting in insufficient selection pressure and poor performance. To address these shortcomings, we propose MaOEA-PV based on PF shape classification and vector angle selection. The three innovation points of this paper are as follows: (I) a new method for PF classification; (II) a new fitness function that combines convergence and diversity indicators, thereby enhancing the quality of parents during mating selection; and (III) the selection of individuals exhibiting the best convergence to add to the population, overcoming the lack of selection pressure during environmental selection. Subsequently, the max-min vector angle strategy is employed. The solutions with the highest diversity and the least convergence are selected based on the max and min vector angles, respectively, which balances convergence and diversity. The performance of algorithm is compared with those of five state-of-the-art MaOEAs on 41 test problems and 5 real-world problems comprising as many 15 objectives. The experimental results demonstrate the competitive and effective nature of the proposed algorithm.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-42"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00373","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Most many-objective optimization algorithms (MaOEAs) adopt a pre-assumed Pareto front (PF) shape, instead of the true PF shape, to balance convergence and diversity in high-dimensional objective space, resulting in insufficient selection pressure and poor performance. To address these shortcomings, we propose MaOEA-PV based on PF shape classification and vector angle selection. The three innovation points of this paper are as follows: (I) a new method for PF classification; (II) a new fitness function that combines convergence and diversity indicators, thereby enhancing the quality of parents during mating selection; and (III) the selection of individuals exhibiting the best convergence to add to the population, overcoming the lack of selection pressure during environmental selection. Subsequently, the max-min vector angle strategy is employed. The solutions with the highest diversity and the least convergence are selected based on the max and min vector angles, respectively, which balances convergence and diversity. The performance of algorithm is compared with those of five state-of-the-art MaOEAs on 41 test problems and 5 real-world problems comprising as many 15 objectives. The experimental results demonstrate the competitive and effective nature of the proposed algorithm.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.