Chemical Migration, Digestive Behaviors and Effect on Gut Microbiota of PLA and PBAT Oligomers

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2025-03-18 DOI:10.1016/j.jhazmat.2025.137988
Guowei Ma, Xiaomeng Gao, Yuting Chen, Hanfei Li, Yiling Cui, Peixue Guo, Tingting Zhao, Feng Di
{"title":"Chemical Migration, Digestive Behaviors and Effect on Gut Microbiota of PLA and PBAT Oligomers","authors":"Guowei Ma, Xiaomeng Gao, Yuting Chen, Hanfei Li, Yiling Cui, Peixue Guo, Tingting Zhao, Feng Di","doi":"10.1016/j.jhazmat.2025.137988","DOIUrl":null,"url":null,"abstract":"As biodegradable food contact materials (FCMs), polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) may release oligomers into food and raise potential health concerns. This study investigated the migration characteristics and digestive behaviors of oligomers by combining food simulation migration experiments, an <em>in vitro</em> digestion model, and high-resolution mass spectrometry. Moreover, the effects of the migrants from both materials on gut microbiota were evaluated following <em>in vitro</em> colonic fermentation for 48<!-- --> <!-- -->h. The results indicated that 51 PLA oligomers and 45 PBAT oligomers were released into food simulants, with the migration increasing with ethanol concentration. Cyclic oligomers exhibited higher migration than linear oligomers. During digestion, PLA oligomers were almost completely degraded, whereas PBAT oligomers increased, additionally, cyclic oligomers were more susceptible to degradation. Migrants from both materials exhibited cytotoxicity effect on Caco-2 cells, disrupted the gut microbiota homeostasis, affecting multiple metabolic pathways. Especially, the migrants from PBAT inhibited the production of acetic, butyric, and isobutyric acids, while reducing the degradation of propionic acid. Overall, PBAT may pose a greater hazard than PLA. In conclusion, based on a new perspective of “lifecycle”, this systematic study will contribute to a deeper understanding of the safety of PLA and PBAT when utilized as FCMs.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"25 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137988","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

As biodegradable food contact materials (FCMs), polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) may release oligomers into food and raise potential health concerns. This study investigated the migration characteristics and digestive behaviors of oligomers by combining food simulation migration experiments, an in vitro digestion model, and high-resolution mass spectrometry. Moreover, the effects of the migrants from both materials on gut microbiota were evaluated following in vitro colonic fermentation for 48 h. The results indicated that 51 PLA oligomers and 45 PBAT oligomers were released into food simulants, with the migration increasing with ethanol concentration. Cyclic oligomers exhibited higher migration than linear oligomers. During digestion, PLA oligomers were almost completely degraded, whereas PBAT oligomers increased, additionally, cyclic oligomers were more susceptible to degradation. Migrants from both materials exhibited cytotoxicity effect on Caco-2 cells, disrupted the gut microbiota homeostasis, affecting multiple metabolic pathways. Especially, the migrants from PBAT inhibited the production of acetic, butyric, and isobutyric acids, while reducing the degradation of propionic acid. Overall, PBAT may pose a greater hazard than PLA. In conclusion, based on a new perspective of “lifecycle”, this systematic study will contribute to a deeper understanding of the safety of PLA and PBAT when utilized as FCMs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Multidimensional effects of a glyphosate-based herbicide on Joannesia princeps Vell. (Euphorbiaceae): Morphoanatomical, metabolic, and genotoxic biomarkers as indicators of damage in a non-target native tree species Layered Clay Confined Single-Atom Catalyst for Enhanced Radical Pathway to Achieve Ultrafast Degradation of Bisphenol A Effects of Emerging Pollutant Mixtures: Assessing the Impact of Caffeine and Ionic Liquid on Cyanobacteria and Diatom Species Boosting micropollutants removal over bimetallic Fe-Mo catalyst via peracetic acid activation: Mo doping enhanced generation of reactive oxygen species Sulfide intrusion of seagrass Thalassia hemprichii along a eutrophication gradient with carbonate and terrigenous sediments in tropical coastal sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1