{"title":"Chemical Migration, Digestive Behaviors and Effect on Gut Microbiota of PLA and PBAT Oligomers","authors":"Guowei Ma, Xiaomeng Gao, Yuting Chen, Hanfei Li, Yiling Cui, Peixue Guo, Tingting Zhao, Feng Di","doi":"10.1016/j.jhazmat.2025.137988","DOIUrl":null,"url":null,"abstract":"As biodegradable food contact materials (FCMs), polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) may release oligomers into food and raise potential health concerns. This study investigated the migration characteristics and digestive behaviors of oligomers by combining food simulation migration experiments, an <em>in vitro</em> digestion model, and high-resolution mass spectrometry. Moreover, the effects of the migrants from both materials on gut microbiota were evaluated following <em>in vitro</em> colonic fermentation for 48<!-- --> <!-- -->h. The results indicated that 51 PLA oligomers and 45 PBAT oligomers were released into food simulants, with the migration increasing with ethanol concentration. Cyclic oligomers exhibited higher migration than linear oligomers. During digestion, PLA oligomers were almost completely degraded, whereas PBAT oligomers increased, additionally, cyclic oligomers were more susceptible to degradation. Migrants from both materials exhibited cytotoxicity effect on Caco-2 cells, disrupted the gut microbiota homeostasis, affecting multiple metabolic pathways. Especially, the migrants from PBAT inhibited the production of acetic, butyric, and isobutyric acids, while reducing the degradation of propionic acid. Overall, PBAT may pose a greater hazard than PLA. In conclusion, based on a new perspective of “lifecycle”, this systematic study will contribute to a deeper understanding of the safety of PLA and PBAT when utilized as FCMs.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"25 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137988","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
As biodegradable food contact materials (FCMs), polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) may release oligomers into food and raise potential health concerns. This study investigated the migration characteristics and digestive behaviors of oligomers by combining food simulation migration experiments, an in vitro digestion model, and high-resolution mass spectrometry. Moreover, the effects of the migrants from both materials on gut microbiota were evaluated following in vitro colonic fermentation for 48 h. The results indicated that 51 PLA oligomers and 45 PBAT oligomers were released into food simulants, with the migration increasing with ethanol concentration. Cyclic oligomers exhibited higher migration than linear oligomers. During digestion, PLA oligomers were almost completely degraded, whereas PBAT oligomers increased, additionally, cyclic oligomers were more susceptible to degradation. Migrants from both materials exhibited cytotoxicity effect on Caco-2 cells, disrupted the gut microbiota homeostasis, affecting multiple metabolic pathways. Especially, the migrants from PBAT inhibited the production of acetic, butyric, and isobutyric acids, while reducing the degradation of propionic acid. Overall, PBAT may pose a greater hazard than PLA. In conclusion, based on a new perspective of “lifecycle”, this systematic study will contribute to a deeper understanding of the safety of PLA and PBAT when utilized as FCMs.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.