Phosphate-solubilizing bacteria facilitate rhizospheric processes of Bidens pilosa L. in the phytoremediation of cadmium-contaminated soil: Link between phosphorus availability and cadmium accumulation
{"title":"Phosphate-solubilizing bacteria facilitate rhizospheric processes of Bidens pilosa L. in the phytoremediation of cadmium-contaminated soil: Link between phosphorus availability and cadmium accumulation","authors":"Yi Li, Shiyu Luo, Yiyun Fu, Chijian Tang, Xiaoxiao Qin, Dongyi Shi, Wei Lan, Yingxuan Tang, Fangming Yu","doi":"10.1016/j.jhazmat.2025.137997","DOIUrl":null,"url":null,"abstract":"Although cadmium (Cd) hyperaccumulators have been widely used in phytoremediation of Cd-contaminated soils, the relationship between soil phosphorus (P) uptake and Cd accumulation during phytoremediation remains unclear. In this study, a phosphate-solubilizing bacterium (PSB), <em>Enterobacter</em> sp., and the Cd hyperaccumulator <em>B. pilosa</em> L. were selected to address this knowledge gap. Our results show that <em>Enterobacter</em> sp. inoculation enhances P cycling processes in the rhizosphere of <em>B. pilosa</em> L., resulting in an increase in soil available phosphorus (AP), by 16.2% to 84.3% in low-contaminated soil and by 17.6% to 64.8% in high-contaminated soil. Inorganic P solubilization was the primary process driving the increase in AP content, contributing the most to soil P cycling. Moreover, <em>Enterobacter</em> sp. inoculation significantly promoted the growth of <em>B. pilosa</em> L., boosting total phosphorus, phospholipids, primary metabolic phosphorus, and Cd concentrations in plant tissues. Notably, a strong positive correlation was observed between soil AP and Cd concentrations in plant tissues. P-functional microbes in the rhizosphere, encoding genes such as <em>gcd</em>, <em>ppa</em>, and <em>ppx-gppA</em>, predominantly enhance P bioavailability in soils. Furthermore, in P-deficient and heavily contaminated soils, Proteobacteria replaced Actinobacteria as the predominant hosts for key genes involved in soil P cycling. This study provides valuable insights into the critical link between P availability and Cd accumulation, emphasizing the role of P cycling in enhancing Cd accumulation during phytoremediation mediated by PSB.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"34 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137997","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although cadmium (Cd) hyperaccumulators have been widely used in phytoremediation of Cd-contaminated soils, the relationship between soil phosphorus (P) uptake and Cd accumulation during phytoremediation remains unclear. In this study, a phosphate-solubilizing bacterium (PSB), Enterobacter sp., and the Cd hyperaccumulator B. pilosa L. were selected to address this knowledge gap. Our results show that Enterobacter sp. inoculation enhances P cycling processes in the rhizosphere of B. pilosa L., resulting in an increase in soil available phosphorus (AP), by 16.2% to 84.3% in low-contaminated soil and by 17.6% to 64.8% in high-contaminated soil. Inorganic P solubilization was the primary process driving the increase in AP content, contributing the most to soil P cycling. Moreover, Enterobacter sp. inoculation significantly promoted the growth of B. pilosa L., boosting total phosphorus, phospholipids, primary metabolic phosphorus, and Cd concentrations in plant tissues. Notably, a strong positive correlation was observed between soil AP and Cd concentrations in plant tissues. P-functional microbes in the rhizosphere, encoding genes such as gcd, ppa, and ppx-gppA, predominantly enhance P bioavailability in soils. Furthermore, in P-deficient and heavily contaminated soils, Proteobacteria replaced Actinobacteria as the predominant hosts for key genes involved in soil P cycling. This study provides valuable insights into the critical link between P availability and Cd accumulation, emphasizing the role of P cycling in enhancing Cd accumulation during phytoremediation mediated by PSB.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.