Yi Yuan, yang Hu, Yi Gan, Zhi Liang Dong, Yijia Wang, Enzhong Jin, Mingrui Yang, Frederick Benjamin Holness, Vinicius Martins, Qingsong Tu, Yang Zhao
{"title":"Self-Sacrifice of Sulfide Electrolytes Facilitating Stable Solid-State Sodium-Sulfur Batteries","authors":"Yi Yuan, yang Hu, Yi Gan, Zhi Liang Dong, Yijia Wang, Enzhong Jin, Mingrui Yang, Frederick Benjamin Holness, Vinicius Martins, Qingsong Tu, Yang Zhao","doi":"10.1039/d4ee06171c","DOIUrl":null,"url":null,"abstract":"Sulfide electrolytes have emerged as the preferred choice for solid-state sodium-sulfur (Na-S) batteries due to their excellent compatibility with sulfur cathodes. Despite their advantages, such as high ionic conductivity, mechanical flexibility, and enhanced safety, challenges like narrow electrochemical stability windows and inadequate interfacial contact persist and require urgent resolution. Contrary to the conventional approach of minimizing electrolyte degradation, this study leverages the decomposition of a typically unstable sulfide electrolyte, Na3SbS4 (NAS), to enhance both cathode and anode interfaces. By elucidating the reversible self-redox mechanism of NAS, we demonstrate that a cathode composite containing NAS-S as co-active materials achieves an exceptional discharge capacity at room temperature, surpassing the theoretical specific capacity of sulfur alone. Furthermore, the strong interaction between NAS and a Na-based alloy anode leads to the in-situ formation of a homogeneous interlayer. This passivation layer, acting as both an electron regulator and protective barrier, prevents further electrolyte corrosion and dendrite penetration, resulting in remarkable cycling stability. This novel approach of utilizing electrolyte decomposition offers a fresh perspective on interface engineering, advancing solid-state Na-S batteries towards practical, next-generation energy storage solutions with improved capacity output and cycle life.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"24 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee06171c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfide electrolytes have emerged as the preferred choice for solid-state sodium-sulfur (Na-S) batteries due to their excellent compatibility with sulfur cathodes. Despite their advantages, such as high ionic conductivity, mechanical flexibility, and enhanced safety, challenges like narrow electrochemical stability windows and inadequate interfacial contact persist and require urgent resolution. Contrary to the conventional approach of minimizing electrolyte degradation, this study leverages the decomposition of a typically unstable sulfide electrolyte, Na3SbS4 (NAS), to enhance both cathode and anode interfaces. By elucidating the reversible self-redox mechanism of NAS, we demonstrate that a cathode composite containing NAS-S as co-active materials achieves an exceptional discharge capacity at room temperature, surpassing the theoretical specific capacity of sulfur alone. Furthermore, the strong interaction between NAS and a Na-based alloy anode leads to the in-situ formation of a homogeneous interlayer. This passivation layer, acting as both an electron regulator and protective barrier, prevents further electrolyte corrosion and dendrite penetration, resulting in remarkable cycling stability. This novel approach of utilizing electrolyte decomposition offers a fresh perspective on interface engineering, advancing solid-state Na-S batteries towards practical, next-generation energy storage solutions with improved capacity output and cycle life.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).