{"title":"Comprehensive crystallization retardation of inorganic perovskite for high performance inverted solar cells","authors":"Zezhang Wang, Tianfei Xu, Nan Li, Zhen Chang, Jing Shan, Yong Wang, Minfang Wu, Fengwei Xiao, Shengzhong Frank Liu, Wanchun Xiang","doi":"10.1039/d5ee00149h","DOIUrl":null,"url":null,"abstract":"Inverted inorganic perovskite solar cells (PSCs) are ideal top cells for tandem configurations due to their ideal bandgap and excellent thermal stability. However, water-induced rapid crystallization during inorganic perovskite film processing in ambient air is difficult to control. Here, we report a crystallization retardation method to prepare inorganic perovskite film by incorporating acrylonitrile-methyl acrylate copolymer (AMAC) in perovskite precursor solution. Firstly, the strong interaction between AMAC and the precursor solution yields increased colloidal size, delays dimethyl sulfoxide (DMSO) volatilization during annealing and postpones the phase transition. Secondly, the interaction between AMAC and dimethylamine (DMA+) slows down the ion exchange with Cs+. These interactions retard perovskite crystallization, increase pack-crystal grain size and reduce residual stress. Combined with the functional groups in AMAC, the incorporation of AMAC reduces defects in perovskite films, modulates interfacial energy levels, prolongs charge lifetimes, and inhibiting the migration of iodide ions. Ultimately, the power conversion efficiency (PCE) of the AMAC-incorporated inverted (p-i-n) and conventional (n-i-p) PSCs reach 21.7% and 21.8%, respectively, while the unencapsulated devices show only 8% degradation over 2500 h of maximum power point tracking and continuous operation.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"183 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ee00149h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inverted inorganic perovskite solar cells (PSCs) are ideal top cells for tandem configurations due to their ideal bandgap and excellent thermal stability. However, water-induced rapid crystallization during inorganic perovskite film processing in ambient air is difficult to control. Here, we report a crystallization retardation method to prepare inorganic perovskite film by incorporating acrylonitrile-methyl acrylate copolymer (AMAC) in perovskite precursor solution. Firstly, the strong interaction between AMAC and the precursor solution yields increased colloidal size, delays dimethyl sulfoxide (DMSO) volatilization during annealing and postpones the phase transition. Secondly, the interaction between AMAC and dimethylamine (DMA+) slows down the ion exchange with Cs+. These interactions retard perovskite crystallization, increase pack-crystal grain size and reduce residual stress. Combined with the functional groups in AMAC, the incorporation of AMAC reduces defects in perovskite films, modulates interfacial energy levels, prolongs charge lifetimes, and inhibiting the migration of iodide ions. Ultimately, the power conversion efficiency (PCE) of the AMAC-incorporated inverted (p-i-n) and conventional (n-i-p) PSCs reach 21.7% and 21.8%, respectively, while the unencapsulated devices show only 8% degradation over 2500 h of maximum power point tracking and continuous operation.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).