Patrick Ryan, Hyejin Yoon, Seema Amin, James J Chambers, Jungwoo Lee
{"title":"AI-Assisted Label-Free Monitoring Bone Mineral Metabolism on Demineralized Bone Paper.","authors":"Patrick Ryan, Hyejin Yoon, Seema Amin, James J Chambers, Jungwoo Lee","doi":"10.1021/acsbiomaterials.4c02349","DOIUrl":null,"url":null,"abstract":"<p><p>Effective drug development for bone-related diseases, such as osteoporosis and metastasis, is hindered by the lack of physiologically relevant in vitro models. Traditional platforms, including standard tissue culture plastic, fail to replicate the structural and functional complexity of the natural bone extracellular matrix. Recently, osteoid-mimicking demineralized bone paper (DBP), which preserves the intrinsic collagen structure of mature bone and exhibits semitransparency, has demonstrated the ability to reproduce in-vivo-relevant osteogenic processes and mineral metabolism. Here, we present a label-free, longitudinal, and quantitative monitoring of mineralized collagen formation by osteoblasts and subsequent osteoclast-driven mineral resorption on DBP using brightfield microscopy. A Segment.ai machine learning algorithm is applied for time-lapse bright-field image analysis, enabling identification of osteoclast resorption areas and automated quantification of large image datasets over a three-week culture period. This work highlights the potential of DBP as a transformative platform for bone-targeting drug screening and osteoporosis research.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02349","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Effective drug development for bone-related diseases, such as osteoporosis and metastasis, is hindered by the lack of physiologically relevant in vitro models. Traditional platforms, including standard tissue culture plastic, fail to replicate the structural and functional complexity of the natural bone extracellular matrix. Recently, osteoid-mimicking demineralized bone paper (DBP), which preserves the intrinsic collagen structure of mature bone and exhibits semitransparency, has demonstrated the ability to reproduce in-vivo-relevant osteogenic processes and mineral metabolism. Here, we present a label-free, longitudinal, and quantitative monitoring of mineralized collagen formation by osteoblasts and subsequent osteoclast-driven mineral resorption on DBP using brightfield microscopy. A Segment.ai machine learning algorithm is applied for time-lapse bright-field image analysis, enabling identification of osteoclast resorption areas and automated quantification of large image datasets over a three-week culture period. This work highlights the potential of DBP as a transformative platform for bone-targeting drug screening and osteoporosis research.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture