The involvement of PsTCP genes in hormone-mediated process of bud dormancy release in tree peony (Paeonia suffruticosa).

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-03-18 DOI:10.1186/s12864-025-11439-7
Qianqian Wang, Bole Li, Zefeng Qiu, Jiayi Ying, Xuyichen Jin, Zeyun Lu, Junli Zhang, Xia Chen, Xiangtao Zhu
{"title":"The involvement of PsTCP genes in hormone-mediated process of bud dormancy release in tree peony (Paeonia suffruticosa).","authors":"Qianqian Wang, Bole Li, Zefeng Qiu, Jiayi Ying, Xuyichen Jin, Zeyun Lu, Junli Zhang, Xia Chen, Xiangtao Zhu","doi":"10.1186/s12864-025-11439-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The complete dormancy release determines the quality of bud break, flowering and fruiting. While in tree peony (Paeonia suffruticosa Andr.), the insufficient accumulation of cold temperatures results in incomplete dormancy release and poor flowering quality.</p><p><strong>Results: </strong>In order to investigate if phytohormone can replace the chilling requirement in south China and other similar regions, the roles of fluridone (Flu), gibberellin (GA<sub>3</sub>), and their combination in the bud dormancy release process were analyzed. It demonstrated that the application of exogenous GA<sub>3</sub> and the mixture significantly expedited the dormancy release of tree peony at 23℃. Furthermore, the endogenous hormone levels provided evidence for the substantial impact of exogenous GA<sub>3</sub> on dormancy release, highlighting its potential involvement in the chilling-independent pathway of dormancy release. Transcriptome sequencing and analysis of expression profiles were conducted to identify the crucial genes implicated in the dormancy release mechanism of tree peony. Among numerous genes from diverse gene families, the particularly interesting were TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS-like genes (PsTCP3, PsTCP4, and PsTCP14), which had significant expression levels during the dormancy release process under different treatments. They were divided into two distinct sub-families based on their different domains. Specifically, PsTCP14 was classified under Class I, while PsTCP3 and PsTCP4 were classified under Class II. The analysis of expression patterns revealed a significant accumulation of the three PsTCPs in buds undergoing dormancy release, with clear upregulation observed in response to GA<sub>3</sub> and the mixture treatments. Additionally, the analysis of promoter activity demonstrated the sensitivity of PsTCP4 and PsTCP14 to GA<sub>3</sub> and Flu.</p><p><strong>Conclusion: </strong>The application of exogenous GA<sub>3</sub> has been shown to effectively expedite the release of dormancy in tree peony through a pathway that is not dependent on chilling. Further research found that PsTCP genes might play a crucial role in this process. These findings contribute to the understanding of the molecular mechanism of PsTCPs in the hormone-mediated and temperature-independent release of bud dormancy in tree peony.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"266"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11917049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11439-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The complete dormancy release determines the quality of bud break, flowering and fruiting. While in tree peony (Paeonia suffruticosa Andr.), the insufficient accumulation of cold temperatures results in incomplete dormancy release and poor flowering quality.

Results: In order to investigate if phytohormone can replace the chilling requirement in south China and other similar regions, the roles of fluridone (Flu), gibberellin (GA3), and their combination in the bud dormancy release process were analyzed. It demonstrated that the application of exogenous GA3 and the mixture significantly expedited the dormancy release of tree peony at 23℃. Furthermore, the endogenous hormone levels provided evidence for the substantial impact of exogenous GA3 on dormancy release, highlighting its potential involvement in the chilling-independent pathway of dormancy release. Transcriptome sequencing and analysis of expression profiles were conducted to identify the crucial genes implicated in the dormancy release mechanism of tree peony. Among numerous genes from diverse gene families, the particularly interesting were TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS-like genes (PsTCP3, PsTCP4, and PsTCP14), which had significant expression levels during the dormancy release process under different treatments. They were divided into two distinct sub-families based on their different domains. Specifically, PsTCP14 was classified under Class I, while PsTCP3 and PsTCP4 were classified under Class II. The analysis of expression patterns revealed a significant accumulation of the three PsTCPs in buds undergoing dormancy release, with clear upregulation observed in response to GA3 and the mixture treatments. Additionally, the analysis of promoter activity demonstrated the sensitivity of PsTCP4 and PsTCP14 to GA3 and Flu.

Conclusion: The application of exogenous GA3 has been shown to effectively expedite the release of dormancy in tree peony through a pathway that is not dependent on chilling. Further research found that PsTCP genes might play a crucial role in this process. These findings contribute to the understanding of the molecular mechanism of PsTCPs in the hormone-mediated and temperature-independent release of bud dormancy in tree peony.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Genome-wide identification of the P4ATPase gene family and its response to biotic and abiotic stress in soybean (Glycine max L.). Identification and characterization of the TmSnRK2 family proteins related to chicoric acid biosynthesis in Taraxacum mongolicum. JSNMFuP: a unsupervised method for the integrative analysis of single-cell multi-omics data based on non-negative matrix factorization. Abnormal DNA methylation of EBF1 regulates adipogenesis in chicken. Evolution and amplification of the trehalose-6-phosphate synthase gene family in Theaceae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1