{"title":"Identification and characterization of the TmSnRK2 family proteins related to chicoric acid biosynthesis in Taraxacum mongolicum.","authors":"Qun Liu, Zhiqing Wu, Changyang Yu, Xiwu Qi, Hailing Fang, Xu Yu, Li Li, Yang Bai, Dongmei Liu, Zequn Chen, Guoyin Kai, Chengyuan Liang","doi":"10.1186/s12864-025-11460-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Taraxacum mongolicum is rich in phenolic acids and is widely utilized in food and medicine globally. Our previous research demonstrated that the abscisic acid (ABA) hormone significantly enhances chicoric acid accumulation in T. mongolicum. SNF1-related protein kinase 2s (SnRK2s) are extensively involved in ABA signaling and have the potential to regulate the biosynthesis of phenolic acids.</p><p><strong>Results: </strong>In this study, liquid chromatography-mass spectrometry (LC-MS) and transcriptomic analyses revealed that the TmbZIP1-Tm4CL1 pathway plays a crucial role in the transcriptional regulation of chicoric acid biosynthesis. Seven TmSnRK2s were identified in T. mongolicum and classified into three groups. Analysis of the TmSnRK2s promoters (2000 bp in length) indicated that the three most prevalent stress-related elements were ABA, methyl jasmonate (MeJA), and light. ABA treatments (0 h, 2 h, 4 h, 8 h, and 24 h) showed that all seven TmSnRK2s were significantly modulated by ABA, with the exception of SnRK2.7. TmSnRK2.2, TmSnRK2.3, TmSnRK2.6, and TmSnRK2.7 were localized in both the cytoplasm and nucleus, whereas TmSnRK2.1 and TmSnRK2.5 were exclusively observed in the cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that TmSnRK2.1, TmSnRK2.3, TmSnRK2.6, and TmSnRK2.7 interact with TmbZIP1. The motifs 'Q(S/G)(V/D)(D/E)(I/L)××I(I/V)×EA' and 'D×(D/ED××D)' are identified as the core sites that facilitate the binding of TmSnRK2s to TmbZIP1. Dual-luciferase reporter assays demonstrated that TmSnRK2.3 and TmSnRK2.6 enhance the stability of TmbZIP1 binding to proTm4CL1.</p><p><strong>Conclusion: </strong>These findings enhance our understanding of the specific roles of certain members of the TmSnRK2 family in the biosynthesis pathway of chicoric acid.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"276"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11460-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Taraxacum mongolicum is rich in phenolic acids and is widely utilized in food and medicine globally. Our previous research demonstrated that the abscisic acid (ABA) hormone significantly enhances chicoric acid accumulation in T. mongolicum. SNF1-related protein kinase 2s (SnRK2s) are extensively involved in ABA signaling and have the potential to regulate the biosynthesis of phenolic acids.
Results: In this study, liquid chromatography-mass spectrometry (LC-MS) and transcriptomic analyses revealed that the TmbZIP1-Tm4CL1 pathway plays a crucial role in the transcriptional regulation of chicoric acid biosynthesis. Seven TmSnRK2s were identified in T. mongolicum and classified into three groups. Analysis of the TmSnRK2s promoters (2000 bp in length) indicated that the three most prevalent stress-related elements were ABA, methyl jasmonate (MeJA), and light. ABA treatments (0 h, 2 h, 4 h, 8 h, and 24 h) showed that all seven TmSnRK2s were significantly modulated by ABA, with the exception of SnRK2.7. TmSnRK2.2, TmSnRK2.3, TmSnRK2.6, and TmSnRK2.7 were localized in both the cytoplasm and nucleus, whereas TmSnRK2.1 and TmSnRK2.5 were exclusively observed in the cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that TmSnRK2.1, TmSnRK2.3, TmSnRK2.6, and TmSnRK2.7 interact with TmbZIP1. The motifs 'Q(S/G)(V/D)(D/E)(I/L)××I(I/V)×EA' and 'D×(D/ED××D)' are identified as the core sites that facilitate the binding of TmSnRK2s to TmbZIP1. Dual-luciferase reporter assays demonstrated that TmSnRK2.3 and TmSnRK2.6 enhance the stability of TmbZIP1 binding to proTm4CL1.
Conclusion: These findings enhance our understanding of the specific roles of certain members of the TmSnRK2 family in the biosynthesis pathway of chicoric acid.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.