Bai Zhang, Mengdi Nan, Liugen Wang, Hanwen Wu, Xiang Chen, Yongle Shi, Yibing Ma, Jie Gao
{"title":"JSNMFuP: a unsupervised method for the integrative analysis of single-cell multi-omics data based on non-negative matrix factorization.","authors":"Bai Zhang, Mengdi Nan, Liugen Wang, Hanwen Wu, Xiang Chen, Yongle Shi, Yibing Ma, Jie Gao","doi":"10.1186/s12864-025-11462-8","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of sequencing technology, the increasing availability of single-cell multi-omics data from the same cells has provided us with unprecedented opportunities to understand the cellular phenotypes. Integrating multi-omics data has the potential to enhance the ability to reveal cellular heterogeneity. However, data integration analysis is extremely challenging due to the different characteristics and noise levels of different molecular modalities in single-cell data. In this paper, an unsupervised integration method (JSNMFuP) based on non-negative matrix factorization is proposed. This method integrates the information extracted from the latent variables of each omic through a consensus graph. High-dimensional geometrical structure is captured in the original data and biologically-related feature links across modalities are incorporated into the model using regularization terms. JSNMFuP can be utilized for data visualization and clustering, facilitating marker characterization and gene ontology enrichment analysis, providing rich biological insights for downstream analysis. The application on real datasets shows that JSNMFuP has superior performance in cell clustering. The factors are interpretable, making it an effective method for analyzing cell heterogeneity using single-cell multi-omics data.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"274"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11462-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of sequencing technology, the increasing availability of single-cell multi-omics data from the same cells has provided us with unprecedented opportunities to understand the cellular phenotypes. Integrating multi-omics data has the potential to enhance the ability to reveal cellular heterogeneity. However, data integration analysis is extremely challenging due to the different characteristics and noise levels of different molecular modalities in single-cell data. In this paper, an unsupervised integration method (JSNMFuP) based on non-negative matrix factorization is proposed. This method integrates the information extracted from the latent variables of each omic through a consensus graph. High-dimensional geometrical structure is captured in the original data and biologically-related feature links across modalities are incorporated into the model using regularization terms. JSNMFuP can be utilized for data visualization and clustering, facilitating marker characterization and gene ontology enrichment analysis, providing rich biological insights for downstream analysis. The application on real datasets shows that JSNMFuP has superior performance in cell clustering. The factors are interpretable, making it an effective method for analyzing cell heterogeneity using single-cell multi-omics data.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.