Camera Seismocardiogram Based Monitoring of Left Ventricular Ejection Time.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Engineering Pub Date : 2025-03-18 DOI:10.1109/TBME.2025.3548090
Zhiqin Zhou, Jia Huang, Haozhe Li, Lin Liu, Yingen Zhu, Caifeng Shan, Wenjin Wang
{"title":"Camera Seismocardiogram Based Monitoring of Left Ventricular Ejection Time.","authors":"Zhiqin Zhou, Jia Huang, Haozhe Li, Lin Liu, Yingen Zhu, Caifeng Shan, Wenjin Wang","doi":"10.1109/TBME.2025.3548090","DOIUrl":null,"url":null,"abstract":"<p><p>Left Ventricular Ejection Time (LVET), reflecting the duration from the onset to the end of blood ejection by the left ventricle during each heartbeat, is a critical parameter for measuring cardiac pumping efficiency. Continuous and regular monitoring of LVET is particularly crucial in assessing cardiac health, valvular function, and myocardial contractility. Seismocardiogram (SCG) signals can be utilized for LVET monitoring, as the temporal distance between the aortic valve opening (AO) and aortic valve closure (AC) in SCG signals can accurately depict LVET. This study proposes a novel way to extract LVET from laser speckle videos recorded by a remote camera based on the principle of defocused speckle imaging, thereby enabling non-contact monitoring of LVET. We extract both the low-frequency components of laser speckle motion (LSM-LF), regarded as SCG signals, and the high-frequency components of laser speckle motion (LSM-HF) from recorded videos. We utilize LSM-HF to assist the detection of AO and AC markers in LSM-LF. We validated the effectiveness of our AO and AC detection algorithm on a self-made dataset comprising 21 participants with 9616 SCG cycles. The benchmark shows that the detection accuracy for AO and AC reached 98.16% and 97.94%, respectively, with an mean absolute error of 0.5571 ms for LVET estimation. The results demonstrate that camera-SCG has strong potential for cardiac health monitoring.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3548090","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Left Ventricular Ejection Time (LVET), reflecting the duration from the onset to the end of blood ejection by the left ventricle during each heartbeat, is a critical parameter for measuring cardiac pumping efficiency. Continuous and regular monitoring of LVET is particularly crucial in assessing cardiac health, valvular function, and myocardial contractility. Seismocardiogram (SCG) signals can be utilized for LVET monitoring, as the temporal distance between the aortic valve opening (AO) and aortic valve closure (AC) in SCG signals can accurately depict LVET. This study proposes a novel way to extract LVET from laser speckle videos recorded by a remote camera based on the principle of defocused speckle imaging, thereby enabling non-contact monitoring of LVET. We extract both the low-frequency components of laser speckle motion (LSM-LF), regarded as SCG signals, and the high-frequency components of laser speckle motion (LSM-HF) from recorded videos. We utilize LSM-HF to assist the detection of AO and AC markers in LSM-LF. We validated the effectiveness of our AO and AC detection algorithm on a self-made dataset comprising 21 participants with 9616 SCG cycles. The benchmark shows that the detection accuracy for AO and AC reached 98.16% and 97.94%, respectively, with an mean absolute error of 0.5571 ms for LVET estimation. The results demonstrate that camera-SCG has strong potential for cardiac health monitoring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
期刊最新文献
Closed-Perfusion Transretinal ERG Setup for Preclinical Drug and Nanostructure Testing. Acoustic-Fluorescence-Activated-Cell Sorter for Transfection Cells Screening. Multi-Scale and Multi-Level Feature Assessment Framework for Classification of Parkinson's Disease State From Short-Term Motor Tasks. Advancing Myoelectric Prostheses: Efficacy of Gold-Plated 3D-Printed Thermoplastic Dry Electrodes. Camera Seismocardiogram Based Monitoring of Left Ventricular Ejection Time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1