{"title":"Privacy-Preserving Data Augmentation for Digital Pathology Using Improved DCGAN.","authors":"Fengjun Hu, Fan Wu, Dongping Zhang, Hanjie Gu","doi":"10.1109/JBHI.2025.3551720","DOIUrl":null,"url":null,"abstract":"<p><p>The intelligent analysis of Whole Slide Images (WSI) in digital pathology is critical for advancing precision medicine, particularly in oncology. However, the availability of WSI datasets is often limited by privacy regulations, which constrains the performance and generalizability of deep learning models. To address this challenge, this paper proposes an improved data augmentation method based on Deep Convolutional Generative Adversarial Network (DCGAN). Our approach leverages self-supervised pretraining with the CTransPath model to extract diverse and representationally rich WSI features, which guide the generation of high-quality synthetic images. We further enhance the model by introducing a least-squares adversarial loss and a frequency domain loss to improve pixel-level accuracy and structural fidelity, while incorporating residual blocks and skip connections to increase network depth, mitigate gradient vanishing, and improve training stability. Experimental results on the PatchCamelyon dataset demonstrate that our improved DCGAN achieves superior SSIM and FID scores compared to traditional models. The augmented datasets significantly enhance the performance of downstream classification tasks, improving accuracy, AUC, and F1 scores.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3551720","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The intelligent analysis of Whole Slide Images (WSI) in digital pathology is critical for advancing precision medicine, particularly in oncology. However, the availability of WSI datasets is often limited by privacy regulations, which constrains the performance and generalizability of deep learning models. To address this challenge, this paper proposes an improved data augmentation method based on Deep Convolutional Generative Adversarial Network (DCGAN). Our approach leverages self-supervised pretraining with the CTransPath model to extract diverse and representationally rich WSI features, which guide the generation of high-quality synthetic images. We further enhance the model by introducing a least-squares adversarial loss and a frequency domain loss to improve pixel-level accuracy and structural fidelity, while incorporating residual blocks and skip connections to increase network depth, mitigate gradient vanishing, and improve training stability. Experimental results on the PatchCamelyon dataset demonstrate that our improved DCGAN achieves superior SSIM and FID scores compared to traditional models. The augmented datasets significantly enhance the performance of downstream classification tasks, improving accuracy, AUC, and F1 scores.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.