Using weak signals to predict spontaneous breathing trial success: a machine learning approach.

IF 2.8 Q2 CRITICAL CARE MEDICINE Intensive Care Medicine Experimental Pub Date : 2025-03-18 DOI:10.1186/s40635-025-00724-0
Romain Lombardi, Mathieu Jozwiak, Jean Dellamonica, Claude Pasquier
{"title":"Using weak signals to predict spontaneous breathing trial success: a machine learning approach.","authors":"Romain Lombardi, Mathieu Jozwiak, Jean Dellamonica, Claude Pasquier","doi":"10.1186/s40635-025-00724-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Weaning from mechanical ventilation (MV) is a key phase in the management of intensive care unit (ICU) patient. According to the WEAN SAFE study, weaning from MV initiation is defined as the first attempt to separate a patient from the ventilator and the success is the absence of reintubation (or death) within 7 days of extubation. Mortality rates increase with the difficulty of weaning, reaching 38% for the most challenging cases. Predicting the success of weaning is difficult, due to the complexity of factors involved. The many biosignals that are measured in patients during ventilation may be considered \"weak signals\", a concept rarely used in medicine. The aim of this research is to investigate the performance of machine learning (ML) models based on biosignals to predict spontaneous breathing trial success (SBT) using biosignals and to identify the most important variables.</p><p><strong>Methods: </strong>This retrospective study used data from two centers (Nice University Hospital, Archet and Pasteur) collected from 232 intensive care patients who underwent MV (149 successfully and 83 unsuccessfully) between January, 2020 and April, 2023. The study focuses on the development of ML algorithms to predict the success of the spontaneous breathing trial based on a combination of discrete variables and biosignals (time series) recorded during the 24 h prior to the SBT.</p><p><strong>Results: </strong>For the models tested, the best results were obtained with Support Vector Classifier model: AUC-PR 0.963 (0.936-0.970, p = 0.001), AUROC 0.922 (0.871-0.940, p < 0.001).</p><p><strong>Conclusions: </strong>We found that ML models are effective in predicting the success of SBT based on biosignals. Predicting weaning from mechanical ventilation thus appears to be a promising area for the application of AI, through the development of multidimensional models to analyze weak signals.</p>","PeriodicalId":13750,"journal":{"name":"Intensive Care Medicine Experimental","volume":"13 1","pages":"34"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920562/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intensive Care Medicine Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40635-025-00724-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Weaning from mechanical ventilation (MV) is a key phase in the management of intensive care unit (ICU) patient. According to the WEAN SAFE study, weaning from MV initiation is defined as the first attempt to separate a patient from the ventilator and the success is the absence of reintubation (or death) within 7 days of extubation. Mortality rates increase with the difficulty of weaning, reaching 38% for the most challenging cases. Predicting the success of weaning is difficult, due to the complexity of factors involved. The many biosignals that are measured in patients during ventilation may be considered "weak signals", a concept rarely used in medicine. The aim of this research is to investigate the performance of machine learning (ML) models based on biosignals to predict spontaneous breathing trial success (SBT) using biosignals and to identify the most important variables.

Methods: This retrospective study used data from two centers (Nice University Hospital, Archet and Pasteur) collected from 232 intensive care patients who underwent MV (149 successfully and 83 unsuccessfully) between January, 2020 and April, 2023. The study focuses on the development of ML algorithms to predict the success of the spontaneous breathing trial based on a combination of discrete variables and biosignals (time series) recorded during the 24 h prior to the SBT.

Results: For the models tested, the best results were obtained with Support Vector Classifier model: AUC-PR 0.963 (0.936-0.970, p = 0.001), AUROC 0.922 (0.871-0.940, p < 0.001).

Conclusions: We found that ML models are effective in predicting the success of SBT based on biosignals. Predicting weaning from mechanical ventilation thus appears to be a promising area for the application of AI, through the development of multidimensional models to analyze weak signals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intensive Care Medicine Experimental
Intensive Care Medicine Experimental CRITICAL CARE MEDICINE-
CiteScore
5.10
自引率
2.90%
发文量
48
审稿时长
13 weeks
期刊最新文献
Haemoadsorption to remove inflammatory mediators in sepsis: past, present, and future. Estimating the plasma volume by infusing albumin: a retrospective feasibility study. Enhanced glomerular thrombosis in pronated animals with ARDS. Unsupervised clustering for sepsis identification in large-scale patient data: a model development and validation study. Using weak signals to predict spontaneous breathing trial success: a machine learning approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1