Masayuki Hayashi, Naofumi Ito, Jocelyn G Millar, Kiyoshi Nakamuta
{"title":"Discrimination of Methyl-Branched Hydrocarbons by Tetramorium tsushimae Ants: a Focus on Branch Position and Chain Length.","authors":"Masayuki Hayashi, Naofumi Ito, Jocelyn G Millar, Kiyoshi Nakamuta","doi":"10.1007/s10886-025-01595-1","DOIUrl":null,"url":null,"abstract":"<p><p>In nature, organisms are exposed to scents and tastes composed of multiple rather than single chemicals. The ability to sense and correctly identify different chemicals within these complex mixtures is essential for optimized behavior. However, when minor variations in chemical structure do not significantly impact the organisms, a generalized response to similar chemicals without discrimination might be more adaptive. In this study, we investigated the ability of ants to discriminate among methyl-branched alkanes. Ants recognize each other using cuticular hydrocarbons (CHCs), typically composed of a mixture of n-alkanes, n-alkenes, and methyl-branched alkanes. Tetramorium tsushimae ants have been shown to use the methylalkane fraction of CHCs to identify their mutualistic partners. We measured the behavioral responses of ant workers to dummies coated with various hydrocarbons, after presenting them with dummies treated with methylalkanes and a sucrose solution as a reward. The results showed that ants previously exposed to 2-methyltetracosane (2-MeC24) decreased their aggression not only toward 2-MeC24 but also toward 2-MeC26, despite the difference in the chain lengths. Conversely, ants exposed to 13-MeC27 maintained high levels of aggression toward 5-MeC27, which has the methyl branch in a different position. These findings suggest that T. tsushimae ants can differentiate between methylalkanes with different methyl branch positions, but are less able to discriminate between those with the same methyl branch position but different chain lengths.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":"51 2","pages":"41"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-025-01595-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In nature, organisms are exposed to scents and tastes composed of multiple rather than single chemicals. The ability to sense and correctly identify different chemicals within these complex mixtures is essential for optimized behavior. However, when minor variations in chemical structure do not significantly impact the organisms, a generalized response to similar chemicals without discrimination might be more adaptive. In this study, we investigated the ability of ants to discriminate among methyl-branched alkanes. Ants recognize each other using cuticular hydrocarbons (CHCs), typically composed of a mixture of n-alkanes, n-alkenes, and methyl-branched alkanes. Tetramorium tsushimae ants have been shown to use the methylalkane fraction of CHCs to identify their mutualistic partners. We measured the behavioral responses of ant workers to dummies coated with various hydrocarbons, after presenting them with dummies treated with methylalkanes and a sucrose solution as a reward. The results showed that ants previously exposed to 2-methyltetracosane (2-MeC24) decreased their aggression not only toward 2-MeC24 but also toward 2-MeC26, despite the difference in the chain lengths. Conversely, ants exposed to 13-MeC27 maintained high levels of aggression toward 5-MeC27, which has the methyl branch in a different position. These findings suggest that T. tsushimae ants can differentiate between methylalkanes with different methyl branch positions, but are less able to discriminate between those with the same methyl branch position but different chain lengths.
期刊介绍:
Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature.
Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.