Impact of Clinical Decision Support Systems on Medical Students' Case-Solving Performance: Comparison Study with a Focus Group.

IF 3.2 Q1 EDUCATION, SCIENTIFIC DISCIPLINES JMIR Medical Education Pub Date : 2025-03-18 DOI:10.2196/55709
Marco Montagna, Filippo Chiabrando, Rebecca De Lorenzo, Patrizia Rovere Querini
{"title":"Impact of Clinical Decision Support Systems on Medical Students' Case-Solving Performance: Comparison Study with a Focus Group.","authors":"Marco Montagna, Filippo Chiabrando, Rebecca De Lorenzo, Patrizia Rovere Querini","doi":"10.2196/55709","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Health care practitioners use clinical decision support systems (CDSS) as an aid in the crucial task of clinical reasoning and decision-making. Traditional CDSS are online repositories (ORs) and clinical practice guidelines (CPG). Recently, large language models (LLMs) such as ChatGPT have emerged as potential alternatives. They have proven to be powerful, innovative tools, yet they are not devoid of worrisome risks.</p><p><strong>Objective: </strong>This study aims to explore how medical students perform in an evaluated clinical case through the use of different CDSS tools.</p><p><strong>Methods: </strong>The authors randomly divided medical students into 3 groups, CPG, n=6 (38%); OR, n=5 (31%); and ChatGPT, n=5 (31%); and assigned each group a different type of CDSS for guidance in answering prespecified questions, assessing how students' speed and ability at resolving the same clinical case varied accordingly. External reviewers evaluated all answers based on accuracy and completeness metrics (score: 1-5). The authors analyzed and categorized group scores according to the skill investigated: differential diagnosis, diagnostic workup, and clinical decision-making.</p><p><strong>Results: </strong>Answering time showed a trend for the ChatGPT group to be the fastest. The mean scores for completeness were as follows: CPG 4.0, OR 3.7, and ChatGPT 3.8 (P=.49). The mean scores for accuracy were as follows: CPG 4.0, OR 3.3, and ChatGPT 3.7 (P=.02). Aggregating scores according to the 3 students' skill domains, trends in differences among the groups emerge more clearly, with the CPG group that performed best in nearly all domains and maintained almost perfect alignment between its completeness and accuracy.</p><p><strong>Conclusions: </strong>This hands-on session provided valuable insights into the potential perks and associated pitfalls of LLMs in medical education and practice. It suggested the critical need to include teachings in medical degree courses on how to properly take advantage of LLMs, as the potential for misuse is evident and real.</p>","PeriodicalId":36236,"journal":{"name":"JMIR Medical Education","volume":"11 ","pages":"e55709"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/55709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Health care practitioners use clinical decision support systems (CDSS) as an aid in the crucial task of clinical reasoning and decision-making. Traditional CDSS are online repositories (ORs) and clinical practice guidelines (CPG). Recently, large language models (LLMs) such as ChatGPT have emerged as potential alternatives. They have proven to be powerful, innovative tools, yet they are not devoid of worrisome risks.

Objective: This study aims to explore how medical students perform in an evaluated clinical case through the use of different CDSS tools.

Methods: The authors randomly divided medical students into 3 groups, CPG, n=6 (38%); OR, n=5 (31%); and ChatGPT, n=5 (31%); and assigned each group a different type of CDSS for guidance in answering prespecified questions, assessing how students' speed and ability at resolving the same clinical case varied accordingly. External reviewers evaluated all answers based on accuracy and completeness metrics (score: 1-5). The authors analyzed and categorized group scores according to the skill investigated: differential diagnosis, diagnostic workup, and clinical decision-making.

Results: Answering time showed a trend for the ChatGPT group to be the fastest. The mean scores for completeness were as follows: CPG 4.0, OR 3.7, and ChatGPT 3.8 (P=.49). The mean scores for accuracy were as follows: CPG 4.0, OR 3.3, and ChatGPT 3.7 (P=.02). Aggregating scores according to the 3 students' skill domains, trends in differences among the groups emerge more clearly, with the CPG group that performed best in nearly all domains and maintained almost perfect alignment between its completeness and accuracy.

Conclusions: This hands-on session provided valuable insights into the potential perks and associated pitfalls of LLMs in medical education and practice. It suggested the critical need to include teachings in medical degree courses on how to properly take advantage of LLMs, as the potential for misuse is evident and real.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Education
JMIR Medical Education Social Sciences-Education
CiteScore
6.90
自引率
5.60%
发文量
54
审稿时长
8 weeks
期刊最新文献
Author's Reply: Examining Multimodal AI Resources in Medical Education: The Role of Immersion, Motivation, and Fidelity in AI Narrative Learning. Examining Multimodal AI Resources in Medical Education: The Role of Immersion, Motivation, and Fidelity in AI Narrative Learning. Feedback From Dental Students Using Two Alternate Coaching Methods: Qualitative Focus Group Study. Impact of Clinical Decision Support Systems on Medical Students' Case-Solving Performance: Comparison Study with a Focus Group. Evaluation of a Simulation Program for Providing Telenursing Training to Nursing Students: Cohort Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1