A Machine Learning Model Based on Multi-Phase Contrast-enhanced CT for the Preoperative Prediction of the Muscle-Invasive Status of Bladder Cancer.

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Current Medical Imaging Reviews Pub Date : 2025-03-17 DOI:10.2174/0115734056377754250304040058
Xucheng He, Yuqing Chen, Shanshan Zhou, Guisheng Wang, Rongrong Hua, Caihong Li, Yang Wang, Xiaoxia Chen, Ju Ye
{"title":"A Machine Learning Model Based on Multi-Phase Contrast-enhanced CT for the Preoperative Prediction of the Muscle-Invasive Status of Bladder Cancer.","authors":"Xucheng He, Yuqing Chen, Shanshan Zhou, Guisheng Wang, Rongrong Hua, Caihong Li, Yang Wang, Xiaoxia Chen, Ju Ye","doi":"10.2174/0115734056377754250304040058","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Muscle infiltration of bladder cancer has become the most important index to evaluate its prognosis. Machine learning is expected to accurately identify its muscle infiltration status on images.</p><p><strong>Objective: </strong>This study aimed to establish and validate a machine learning prediction model based on multi-phase contrast-enhanced CT (MCECT) for preoperatively evaluating the muscle-invasive status of bladder cancer.</p><p><strong>Methods: </strong>A retrospective study was conducted on bladder cancer patients who underwent surgical resection and pathological confirmation by MCECT scans. They were randomly divided into training and testing groups at a ratio of 8:2; we used an independent external testing set for verification. The radiomics features of lesions were extracted from MCECT images and radiomics signatures were established by dual sample T-test and least absolute shrinkage selection operator (LASSO) regression. Afterward, four machine learning classifier models were established. The receiver operating characteristic (ROC) curve, calibration, and decision curve analysis were employed to evaluate the efficiency of the model and analyze diagnostic performance using accuracy, precision, sensitivity, specificity, and F1-score.</p><p><strong>Results: </strong>The best predictive model was found to have logic regression as the classifier. The AUC value was 0.89 (5-fold cross-validation range 0.83-0.96) in the training group, 0.80 in the test group, and 0.87 in the external testing group. In the testing and external testing group, the diagnostic accuracy, precision, sensitivity, specificity, and F1-score were 0.759, 0.826, 0.863, 0.729, 0.785, and 0.794, 0.755, 0.953, 0.720, and 0.809, respectively.</p><p><strong>Conclusion: </strong>The machine learning model showed good accuracy in predicting the muscle infiltration status of bladder cancer before surgery.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056377754250304040058","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Muscle infiltration of bladder cancer has become the most important index to evaluate its prognosis. Machine learning is expected to accurately identify its muscle infiltration status on images.

Objective: This study aimed to establish and validate a machine learning prediction model based on multi-phase contrast-enhanced CT (MCECT) for preoperatively evaluating the muscle-invasive status of bladder cancer.

Methods: A retrospective study was conducted on bladder cancer patients who underwent surgical resection and pathological confirmation by MCECT scans. They were randomly divided into training and testing groups at a ratio of 8:2; we used an independent external testing set for verification. The radiomics features of lesions were extracted from MCECT images and radiomics signatures were established by dual sample T-test and least absolute shrinkage selection operator (LASSO) regression. Afterward, four machine learning classifier models were established. The receiver operating characteristic (ROC) curve, calibration, and decision curve analysis were employed to evaluate the efficiency of the model and analyze diagnostic performance using accuracy, precision, sensitivity, specificity, and F1-score.

Results: The best predictive model was found to have logic regression as the classifier. The AUC value was 0.89 (5-fold cross-validation range 0.83-0.96) in the training group, 0.80 in the test group, and 0.87 in the external testing group. In the testing and external testing group, the diagnostic accuracy, precision, sensitivity, specificity, and F1-score were 0.759, 0.826, 0.863, 0.729, 0.785, and 0.794, 0.755, 0.953, 0.720, and 0.809, respectively.

Conclusion: The machine learning model showed good accuracy in predicting the muscle infiltration status of bladder cancer before surgery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
246
审稿时长
1 months
期刊介绍: Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques. The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.
期刊最新文献
A Machine Learning Model Based on Multi-Phase Contrast-enhanced CT for the Preoperative Prediction of the Muscle-Invasive Status of Bladder Cancer. Evaluation of Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer through Shear-Wave Elastography. Background Parenchymal Enhancement in Breast MRI Correlates with Molecular Subtypes of Breast Cancer. Correlation between Liver fat Content Determined by Ultrasonic Attenuation Imaging and Lipid Metabolism in Patients with Non-Alcoholic Fatty Liver Disease. Fetal Diagnostics using Vision Transformer for Enhanced Health and Severity Prediction in Ultrasound Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1