Fetal Diagnostics using Vision Transformer for Enhanced Health and Severity Prediction in Ultrasound Imaging.

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Current Medical Imaging Reviews Pub Date : 2025-03-17 DOI:10.2174/0115734056360199250227053012
Eshika Jain, Pratham Kaushik, Vinay Kukreja, Sakshi, Ayush Dogra, Bhawna Goyal
{"title":"Fetal Diagnostics using Vision Transformer for Enhanced Health and Severity Prediction in Ultrasound Imaging.","authors":"Eshika Jain, Pratham Kaushik, Vinay Kukreja, Sakshi, Ayush Dogra, Bhawna Goyal","doi":"10.2174/0115734056360199250227053012","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This research aims to develop and evaluate a novel health classification and severity detection system based on Vision Transformers (ViTs) for fetal ultrasound imagery. This contributes to improved precision in fetal health status detection and abnormalities with more accurate results than other traditional models.</p><p><strong>Background: </strong>Amidst the other imperatives of resource-deficient developing nations, mitigating neonatal mortality rates is a challenge that demands precisionbased solutions in the era of artificial intelligence. Though the advent of machine learning models has added an optimal dimension to deal with emerging complexity in fetal ultrasound imagery, there is a call to address the huge gap in the demanded precision for prediction than the existing interpretation.</p><p><strong>Objective: </strong>This research strives to formulate and access a novel health classification and severity detection system based on the implementation of the Vision Transformers frameworks. This pioneering investigation represents an unparalleled exploration into the efficacy of ViTs for discerning intricate patterns within fetal ultrasonographic imagery, facilitating precise categorization of fetal well-being and prognosticating the magnitude of potential anomalies.</p><p><strong>Methodology: </strong>A private and confidential dataset of 500 fetal ultrasound images has been collected from diverse hospitals. Each image has been annotated by radiologists according to two main labels: the health status of the fetus, which includes healthy, mild, moderate, or severe, and the severity of abnormalities as a continuous measure. At different levels, the dataset underwent pre-processing via distinct techniques. Then, the composite loss function Cross-Entropy has been deployed to train the optimized VIT model using the Adam algorithm.</p><p><strong>Results: </strong>The classification accuracy of the proposed model is 90% for detecting the severity with an F1-score of 0.87 and MAE of 0.30. The research ascertained that the model ViT evinced a superlative efficacy for the capturing of fine-grained spatial relations in ultrasound images to produce revolutionary predictions.</p><p><strong>Conclusion: </strong>These results emphasize that ViTs have the potential to revolutionize fetal health monitoring and will contribute significantly to reducing neonatal mortality by supplying clinicians with accurate and reliable predictions for early interventions. This work stands as a yardstick for further diagnostic applications using AI in fetal health care.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056360199250227053012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: This research aims to develop and evaluate a novel health classification and severity detection system based on Vision Transformers (ViTs) for fetal ultrasound imagery. This contributes to improved precision in fetal health status detection and abnormalities with more accurate results than other traditional models.

Background: Amidst the other imperatives of resource-deficient developing nations, mitigating neonatal mortality rates is a challenge that demands precisionbased solutions in the era of artificial intelligence. Though the advent of machine learning models has added an optimal dimension to deal with emerging complexity in fetal ultrasound imagery, there is a call to address the huge gap in the demanded precision for prediction than the existing interpretation.

Objective: This research strives to formulate and access a novel health classification and severity detection system based on the implementation of the Vision Transformers frameworks. This pioneering investigation represents an unparalleled exploration into the efficacy of ViTs for discerning intricate patterns within fetal ultrasonographic imagery, facilitating precise categorization of fetal well-being and prognosticating the magnitude of potential anomalies.

Methodology: A private and confidential dataset of 500 fetal ultrasound images has been collected from diverse hospitals. Each image has been annotated by radiologists according to two main labels: the health status of the fetus, which includes healthy, mild, moderate, or severe, and the severity of abnormalities as a continuous measure. At different levels, the dataset underwent pre-processing via distinct techniques. Then, the composite loss function Cross-Entropy has been deployed to train the optimized VIT model using the Adam algorithm.

Results: The classification accuracy of the proposed model is 90% for detecting the severity with an F1-score of 0.87 and MAE of 0.30. The research ascertained that the model ViT evinced a superlative efficacy for the capturing of fine-grained spatial relations in ultrasound images to produce revolutionary predictions.

Conclusion: These results emphasize that ViTs have the potential to revolutionize fetal health monitoring and will contribute significantly to reducing neonatal mortality by supplying clinicians with accurate and reliable predictions for early interventions. This work stands as a yardstick for further diagnostic applications using AI in fetal health care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
246
审稿时长
1 months
期刊介绍: Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques. The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.
期刊最新文献
A Machine Learning Model Based on Multi-Phase Contrast-enhanced CT for the Preoperative Prediction of the Muscle-Invasive Status of Bladder Cancer. Evaluation of Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer through Shear-Wave Elastography. Background Parenchymal Enhancement in Breast MRI Correlates with Molecular Subtypes of Breast Cancer. Correlation between Liver fat Content Determined by Ultrasonic Attenuation Imaging and Lipid Metabolism in Patients with Non-Alcoholic Fatty Liver Disease. Fetal Diagnostics using Vision Transformer for Enhanced Health and Severity Prediction in Ultrasound Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1