Segmented MR Images by RG-FCM subjected to Non-Uniform Compression comprising Cascade of different Encoders.

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Current Medical Imaging Reviews Pub Date : 2025-03-17 DOI:10.2174/0115734056356911250220124124
Lovepreet Singh Brar, Sunil Agrawal, Jaget Singh, Ayush Dogra
{"title":"Segmented MR Images by RG-FCM subjected to Non-Uniform Compression comprising Cascade of different Encoders.","authors":"Lovepreet Singh Brar, Sunil Agrawal, Jaget Singh, Ayush Dogra","doi":"10.2174/0115734056356911250220124124","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The fundamental problem with the transmission and storage of medical images is their inherent redundancy and large size necessitating higher bandwidth and a significant amount of storage space.</p><p><strong>Objectives: </strong>The main objective is to enhance the compression efficiency through accurate segmentation followed by non-uniform compression through a cascade of encoders.</p><p><strong>Background: </strong>Due to a sharp growth in digital imaging data, it is highly desirable to reduce the size of medical images by a significant amount, without losing clinically important diagnostic information. The majority of the compression techniques reported in the literature use either manual or traditional segmentation techniques to extract the informative parts of the images. The methods based upon non-uniform compression require accurate extraction of the informative part of the image to achieve higher compression rate.</p><p><strong>Methods: </strong>This research proposes unsupervised machine learning modified fuzzy c-means (FCM) clustering-based segmentation for accurate extraction of informative parts of MR images. The spatial constraints of the images are extracted using an automated region-growing algorithm and incorporated into the objective function of FCM clustering (RG-FCM) to enhance the performance of the segmentation process even in the presence of noise. Further, informative and background parts are subjected to two separate series of encoders, with higher bit rates for the informative part of the image.</p><p><strong>Results: </strong>Empirical analysis was done on the Magnetic Resonance Imaging (MRI)dataset, and experimental results indicate that the proposed technique outperforms similar existing techniques in terms of segmentation and compression metrics.</p><p><strong>Conclusion: </strong>This integration of different segmentation techniques exhibits improvement in Jaccard and dice indexes, and cascade of different encoders endorse the superior performance of the proposed compression technique. The proposed technique can help in achieving higher compression of medical images without compromising clinically significant information.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056356911250220124124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The fundamental problem with the transmission and storage of medical images is their inherent redundancy and large size necessitating higher bandwidth and a significant amount of storage space.

Objectives: The main objective is to enhance the compression efficiency through accurate segmentation followed by non-uniform compression through a cascade of encoders.

Background: Due to a sharp growth in digital imaging data, it is highly desirable to reduce the size of medical images by a significant amount, without losing clinically important diagnostic information. The majority of the compression techniques reported in the literature use either manual or traditional segmentation techniques to extract the informative parts of the images. The methods based upon non-uniform compression require accurate extraction of the informative part of the image to achieve higher compression rate.

Methods: This research proposes unsupervised machine learning modified fuzzy c-means (FCM) clustering-based segmentation for accurate extraction of informative parts of MR images. The spatial constraints of the images are extracted using an automated region-growing algorithm and incorporated into the objective function of FCM clustering (RG-FCM) to enhance the performance of the segmentation process even in the presence of noise. Further, informative and background parts are subjected to two separate series of encoders, with higher bit rates for the informative part of the image.

Results: Empirical analysis was done on the Magnetic Resonance Imaging (MRI)dataset, and experimental results indicate that the proposed technique outperforms similar existing techniques in terms of segmentation and compression metrics.

Conclusion: This integration of different segmentation techniques exhibits improvement in Jaccard and dice indexes, and cascade of different encoders endorse the superior performance of the proposed compression technique. The proposed technique can help in achieving higher compression of medical images without compromising clinically significant information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
246
审稿时长
1 months
期刊介绍: Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques. The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.
期刊最新文献
A Machine Learning Model Based on Multi-Phase Contrast-enhanced CT for the Preoperative Prediction of the Muscle-Invasive Status of Bladder Cancer. Evaluation of Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer through Shear-Wave Elastography. Background Parenchymal Enhancement in Breast MRI Correlates with Molecular Subtypes of Breast Cancer. Correlation between Liver fat Content Determined by Ultrasonic Attenuation Imaging and Lipid Metabolism in Patients with Non-Alcoholic Fatty Liver Disease. Fetal Diagnostics using Vision Transformer for Enhanced Health and Severity Prediction in Ultrasound Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1