{"title":"YOLOv8 Algorithm-aided Detection of Rib Fracture on Multiplane Reconstruction Images.","authors":"Shihong Liu, Wei Zhang, Gang Wu","doi":"10.2174/0115734056337623250212052347","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop and assess the performance of a YOLOv8 algorithm-aided detection model for identifying rib fractures on multiplane reconstruction (MPR) images, addressing the limitations of current AI models and the labor-intensive nature of manual diagnosis.</p><p><strong>Methods: </strong>Ethical approval was obtained, and a dataset comprising 624 MPR images, confirmed by CT, was collected from three regions of Tongji Hospital between May 2020 and May 2023. The images were categorized into training, validation, and external test sets. A musculoskeletal radiologist labeled the images, and a YOLOV8n model was trained and validated using these datasets. The performance metrics, including sensitivity, specificity, accuracy, precision, recall, and F1 score, were calculated.</p><p><strong>Results: </strong>The refined YOLO model demonstrated high diagnostic accuracy, with sensitivity, specificity, and accuracy rates of 96%, 97%, and 97%, respectively. The AI model significantly outperformed the radiologist in terms of diagnostic speed, with an average interpretation time of 2.02 seconds for 144 images compared to 288 seconds required by the radiologist.</p><p><strong>Conclusion: </strong>The YOLOv8 algorithm shows promise in expediting the diagnosis of rib fractures on MPR images with high accuracy, potentially improving clinical efficiency and reducing the workload for radiologists. Future work will focus on enhancing the model with more feature learning capabilities and integrating it into the PACS system for human-computer interaction.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056337623250212052347","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to develop and assess the performance of a YOLOv8 algorithm-aided detection model for identifying rib fractures on multiplane reconstruction (MPR) images, addressing the limitations of current AI models and the labor-intensive nature of manual diagnosis.
Methods: Ethical approval was obtained, and a dataset comprising 624 MPR images, confirmed by CT, was collected from three regions of Tongji Hospital between May 2020 and May 2023. The images were categorized into training, validation, and external test sets. A musculoskeletal radiologist labeled the images, and a YOLOV8n model was trained and validated using these datasets. The performance metrics, including sensitivity, specificity, accuracy, precision, recall, and F1 score, were calculated.
Results: The refined YOLO model demonstrated high diagnostic accuracy, with sensitivity, specificity, and accuracy rates of 96%, 97%, and 97%, respectively. The AI model significantly outperformed the radiologist in terms of diagnostic speed, with an average interpretation time of 2.02 seconds for 144 images compared to 288 seconds required by the radiologist.
Conclusion: The YOLOv8 algorithm shows promise in expediting the diagnosis of rib fractures on MPR images with high accuracy, potentially improving clinical efficiency and reducing the workload for radiologists. Future work will focus on enhancing the model with more feature learning capabilities and integrating it into the PACS system for human-computer interaction.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.