Water structure and electric fields at the interface of oil droplets

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2025-03-19 DOI:10.1038/s41586-025-08702-y
Lixue Shi, R. Allen LaCour, Naixin Qian, Joseph P. Heindel, Xiaoqi Lang, Ruoqi Zhao, Teresa Head-Gordon, Wei Min
{"title":"Water structure and electric fields at the interface of oil droplets","authors":"Lixue Shi, R. Allen LaCour, Naixin Qian, Joseph P. Heindel, Xiaoqi Lang, Ruoqi Zhao, Teresa Head-Gordon, Wei Min","doi":"10.1038/s41586-025-08702-y","DOIUrl":null,"url":null,"abstract":"<p>Interfacial water exhibits rich and complex behaviour<sup>1</sup>, playing an important part in chemistry, biology, geology and engineering. However, there is still much debate on the fundamental properties of water at hydrophobic interfaces, such as orientational ordering, the concentration of hydronium and hydroxide, improper hydrogen bonds and the presence of large electric fields<sup>2,3,4,5</sup>. This controversy arises from the challenges in measuring interfacial systems, even with the most advanced experimental techniques and theoretical approaches available. Here we report on an in-solution, interface-selective Raman spectroscopy method using multivariate curve resolution<sup>6,7</sup> to probe hexadecane-in-water emulsions, aided by a monomer-field theoretical model for Raman spectroscopy<sup>8</sup>. Our results indicate that oil–water emulsion interfaces can exhibit reduced tetrahedral order and weaker hydrogen bonding, along with a substantial population of free hydroxyl groups that experience about 95 cm<sup>−1</sup> redshift in their stretching mode compared with planar oil–water interfaces. Given the known electrostatic zeta potential characteristic of oil droplets<sup>9</sup>, we propose the existence of a strong electric field (about 50–90 MV cm<sup>−1</sup>) emanating from the oil phase. This field is inferred indirectly but supported by control experiments and theoretical estimates. These observations are either absent or opposite in the molecular hydrophobic interface formed by small solutes or at planar oil–water interfaces. Instead, water structural disorder and enhanced electric fields emerge as unique features of the mesoscale interface in oil–water emulsions, potentially contributing to the accelerated chemical reactivity observed at hydrophobic–water interfaces<sup>10,11,12,13</sup>.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"37 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08702-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial water exhibits rich and complex behaviour1, playing an important part in chemistry, biology, geology and engineering. However, there is still much debate on the fundamental properties of water at hydrophobic interfaces, such as orientational ordering, the concentration of hydronium and hydroxide, improper hydrogen bonds and the presence of large electric fields2,3,4,5. This controversy arises from the challenges in measuring interfacial systems, even with the most advanced experimental techniques and theoretical approaches available. Here we report on an in-solution, interface-selective Raman spectroscopy method using multivariate curve resolution6,7 to probe hexadecane-in-water emulsions, aided by a monomer-field theoretical model for Raman spectroscopy8. Our results indicate that oil–water emulsion interfaces can exhibit reduced tetrahedral order and weaker hydrogen bonding, along with a substantial population of free hydroxyl groups that experience about 95 cm−1 redshift in their stretching mode compared with planar oil–water interfaces. Given the known electrostatic zeta potential characteristic of oil droplets9, we propose the existence of a strong electric field (about 50–90 MV cm−1) emanating from the oil phase. This field is inferred indirectly but supported by control experiments and theoretical estimates. These observations are either absent or opposite in the molecular hydrophobic interface formed by small solutes or at planar oil–water interfaces. Instead, water structural disorder and enhanced electric fields emerge as unique features of the mesoscale interface in oil–water emulsions, potentially contributing to the accelerated chemical reactivity observed at hydrophobic–water interfaces10,11,12,13.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization
IF 0 Proceedings of the National Academy of SciencesPub Date : 2016-03-07 DOI: 10.1073/pnas.1512577113
Harianto Tjong, Wenyuan Li, Reza Kalhor, Chao Dai, S. Hao, K. Gong, Yonggang Zhou, Haochen Li, X. Zhou, M. L. Le Gros, C. Larabell, Lin Chen, F. Alber
Abstract 5676: Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples
IF 11.2 ACS Chemical Health & SafetyPub Date : 2024-03-22 DOI: 10.1158/1538-7445.am2024-5676
Qixuan Wang, Juan Wang, Radhika Mathur, Mark W. Youngblood, Q. Jin, Ye Hou, Lena Stasiak, Yu Luan, Joseph F. Costello, Feng Yue
Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples
IF 11.7 1区 综合性期刊Science AdvancesPub Date : 2025-03-12 DOI:
Qixuan Wang, Juan Wang, Radhika Mathur, Mark W. Youngblood, Qiushi Jin, Ye Hou, Lena Ann Stasiak, Yu Luan, Hengqiang Zhao, Stephanie Hilz, Chibo Hong, Susan M. Chang, Janine M. Lupo, Joanna J. Phillips, Joseph F. Costello, Feng Yue
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Audio long read: How quickly are you ageing? What molecular ‘clocks’ can tell you about your health Can trauma from violence be genetically inherited? Scientists debate Syria refugee study Publishers trial paying peer reviewers — what did they find? ‘Open source’ AI isn’t truly open — here’s how researchers can reclaim the term 75% of US scientists who answered Nature poll consider leaving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1