Amrendra Kumar, Juliana da Fonseca Rezende e Mello, Yangyu Wu, Daniel Morris, Ikram Mezghani, Erin Smith, Stephane Rombauts, Peter Bossier, Juno Krahn, Fred J. Sigworth, Nelli Mnatsakanyan
{"title":"Cryo-EM structure of the brine shrimp mitochondrial ATP synthase suggests an inactivation mechanism for the ATP synthase leak channel","authors":"Amrendra Kumar, Juliana da Fonseca Rezende e Mello, Yangyu Wu, Daniel Morris, Ikram Mezghani, Erin Smith, Stephane Rombauts, Peter Bossier, Juno Krahn, Fred J. Sigworth, Nelli Mnatsakanyan","doi":"10.1038/s41418-025-01476-w","DOIUrl":null,"url":null,"abstract":"<p>Mammalian mitochondria undergo Ca<sup>2+</sup>-induced and cyclosporinA (CsA)-regulated permeability transition (mPT) by activating the mitochondrial permeability transition pore (mPTP) situated in mitochondrial inner membranes. Ca<sup>2+</sup>-induced prolonged openings of mPTP under certain pathological conditions result in mitochondrial swelling and rupture of the outer membrane, leading to mitochondrial dysfunction and cell death. While the exact molecular composition and structure of mPTP remain unknown, mammalian ATP synthase was reported to form voltage and Ca<sup>2+</sup>-activated leak channels involved in mPT. Unlike in mammals, mitochondria of the crustacean <i>Artemia franciscana</i> have the ability to accumulate large amounts of Ca<sup>2+</sup> without undergoing the mPT. Here, we performed structural and functional analysis of <i>A. franciscana</i> ATP synthase to study the molecular mechanism of mPTP inhibition in this organism. We found that the channel formed by the <i>A. franciscana</i> ATP synthase dwells predominantly in its inactive state and is insensitive to Ca<sup>2+</sup>, in contrast to porcine heart ATP synthase. Single-particle cryo-electron microscopy (cryo-EM) analysis revealed distinct structural features in <i>A. franciscana</i> ATP synthase compared with mammals. The stronger density of the e-subunit C-terminal region and its enhanced interaction with the c-ring were found in <i>A. franciscana</i> ATP synthase. These data suggest an inactivation mechanism of the ATP synthase leak channel and its possible contribution to the lack of mPT in this organism.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"56 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01476-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mammalian mitochondria undergo Ca2+-induced and cyclosporinA (CsA)-regulated permeability transition (mPT) by activating the mitochondrial permeability transition pore (mPTP) situated in mitochondrial inner membranes. Ca2+-induced prolonged openings of mPTP under certain pathological conditions result in mitochondrial swelling and rupture of the outer membrane, leading to mitochondrial dysfunction and cell death. While the exact molecular composition and structure of mPTP remain unknown, mammalian ATP synthase was reported to form voltage and Ca2+-activated leak channels involved in mPT. Unlike in mammals, mitochondria of the crustacean Artemia franciscana have the ability to accumulate large amounts of Ca2+ without undergoing the mPT. Here, we performed structural and functional analysis of A. franciscana ATP synthase to study the molecular mechanism of mPTP inhibition in this organism. We found that the channel formed by the A. franciscana ATP synthase dwells predominantly in its inactive state and is insensitive to Ca2+, in contrast to porcine heart ATP synthase. Single-particle cryo-electron microscopy (cryo-EM) analysis revealed distinct structural features in A. franciscana ATP synthase compared with mammals. The stronger density of the e-subunit C-terminal region and its enhanced interaction with the c-ring were found in A. franciscana ATP synthase. These data suggest an inactivation mechanism of the ATP synthase leak channel and its possible contribution to the lack of mPT in this organism.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.