{"title":"Exploring clinical and genetic evidence in association between unsaturated fatty acids and acne.","authors":"Li Zhang, Yadong Li, Yunjing Pu, Tianyuan Dang, Qian Shi, Wenjuan Wu","doi":"10.1007/s00394-025-03647-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to comprehensively analyze the intricate relationship between unsaturated fatty acids (UFAs, particularly omega-3 and omega-6 UFAs) and acne, from their clinical therapeutic effects to their underlying genetic regulatory mechanisms, to elucidate the role of UFAs in acne pathogenesis.</p><p><strong>Methods: </strong>Clinical evidence synthesis: we systematically reviewed randomized controlled trials (RCTs) to evaluate the impact of UFA supplementation on acne treatment outcomes. Genetic analysis: two-sample Mendelian randomization (MR) analysis we used to investigate causal relationships between serum UFA metabolites and acne, identifying potential key regulatory enzymes.</p><p><strong>Results: </strong>The synthesis of these RCT studies confirmed that UFA supplementation improved acne conditions. MR analysis revealed causal links between three serum UFA metabolites and acne, with dihomo-gamma-linolenic acid (DGLA) (OR = 8.457; 95% CI: 2.367-30.214; P-value = 0.001) as a risk factor and arachidonic acid (AA) (OR = 0.209; 95% CI: 0.071-0.618; P-value = 0.005) and eicosapentaenoic acid (EPA) (OR = 0.318; 95% CI: 0.102-0.991; P-value = 0.048) as protective factors. Functional annotation suggested enzymes such as Δ5 desaturase (FADS1) and Δ6 desaturase (FADS2) may play a role in acne regulation.</p><p><strong>Conclusion: </strong>This study offers evidence that supports a connection between UFAs and acne, examining this relationship from both clinical and genetic angles. These findings highlight the role of specific UFAs and their associated metabolic enzymes in the development of acne. Omega-3 UFAs seem to have a protective effect against acne, whereas certain types and ratios of omega-6 UFAs might contribute to acne formation. The varied impacts of UFAs on acne could be attributed to disease processes mediated by specific enzymes. However, the study's limitations include its genetic analysis being primarily based on European populations, which limits the applicability of the findings to other groups. Future research should aim to include a more diverse range of participants to improve the generalizability of the results.</p>","PeriodicalId":12030,"journal":{"name":"European Journal of Nutrition","volume":"64 3","pages":"130"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00394-025-03647-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aims to comprehensively analyze the intricate relationship between unsaturated fatty acids (UFAs, particularly omega-3 and omega-6 UFAs) and acne, from their clinical therapeutic effects to their underlying genetic regulatory mechanisms, to elucidate the role of UFAs in acne pathogenesis.
Methods: Clinical evidence synthesis: we systematically reviewed randomized controlled trials (RCTs) to evaluate the impact of UFA supplementation on acne treatment outcomes. Genetic analysis: two-sample Mendelian randomization (MR) analysis we used to investigate causal relationships between serum UFA metabolites and acne, identifying potential key regulatory enzymes.
Results: The synthesis of these RCT studies confirmed that UFA supplementation improved acne conditions. MR analysis revealed causal links between three serum UFA metabolites and acne, with dihomo-gamma-linolenic acid (DGLA) (OR = 8.457; 95% CI: 2.367-30.214; P-value = 0.001) as a risk factor and arachidonic acid (AA) (OR = 0.209; 95% CI: 0.071-0.618; P-value = 0.005) and eicosapentaenoic acid (EPA) (OR = 0.318; 95% CI: 0.102-0.991; P-value = 0.048) as protective factors. Functional annotation suggested enzymes such as Δ5 desaturase (FADS1) and Δ6 desaturase (FADS2) may play a role in acne regulation.
Conclusion: This study offers evidence that supports a connection between UFAs and acne, examining this relationship from both clinical and genetic angles. These findings highlight the role of specific UFAs and their associated metabolic enzymes in the development of acne. Omega-3 UFAs seem to have a protective effect against acne, whereas certain types and ratios of omega-6 UFAs might contribute to acne formation. The varied impacts of UFAs on acne could be attributed to disease processes mediated by specific enzymes. However, the study's limitations include its genetic analysis being primarily based on European populations, which limits the applicability of the findings to other groups. Future research should aim to include a more diverse range of participants to improve the generalizability of the results.
期刊介绍:
The European Journal of Nutrition publishes original papers, reviews, and short communications in the nutritional sciences. The manuscripts submitted to the European Journal of Nutrition should have their major focus on the impact of nutrients and non-nutrients on
immunology and inflammation,
gene expression,
metabolism,
chronic diseases, or
carcinogenesis,
or a major focus on
epidemiology, including intervention studies with healthy subjects and with patients,
biofunctionality of food and food components, or
the impact of diet on the environment.