{"title":"PoseRL-Net: human pose analysis for motion training guided by robot vision.","authors":"Bin Liu, Hui Wang","doi":"10.3389/fnbot.2025.1531894","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To address the limitations of traditional methods in human pose recognition, such as occlusions, lighting variations, and motion continuity, particularly in complex dynamic environments for seamless human-robot interaction.</p><p><strong>Method: </strong>We propose PoseRL-Net, a deep learning-based pose recognition model that enhances accuracy and robustness in human pose estimation. PoseRL-Net integrates multiple components, including a Spatial-Temporal Graph Convolutional Network (STGCN), attention mechanism, Gated Recurrent Unit (GRU) module, pose refinement, and symmetry constraints. The STGCN extracts spatial and temporal features, the attention mechanism focuses on key pose features, the GRU ensures temporal consistency, and the refinement and symmetry constraints improve structural plausibility and stability.</p><p><strong>Results: </strong>Extensive experiments conducted on the Human3.6M and MPI-INF-3DHP datasets demonstrate that PoseRL-Net outperforms existing state-of-the-art models on key metrics such as MPIPE and P-MPIPE, showcasing superior performance across various pose recognition tasks.</p><p><strong>Conclusion: </strong>PoseRL-Net not only improves pose estimation accuracy but also provides crucial support for intelligent decision-making and motion planning in robots operating in dynamic and complex scenarios, offering significant practical value for collaborative robotics.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1531894"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920136/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1531894","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To address the limitations of traditional methods in human pose recognition, such as occlusions, lighting variations, and motion continuity, particularly in complex dynamic environments for seamless human-robot interaction.
Method: We propose PoseRL-Net, a deep learning-based pose recognition model that enhances accuracy and robustness in human pose estimation. PoseRL-Net integrates multiple components, including a Spatial-Temporal Graph Convolutional Network (STGCN), attention mechanism, Gated Recurrent Unit (GRU) module, pose refinement, and symmetry constraints. The STGCN extracts spatial and temporal features, the attention mechanism focuses on key pose features, the GRU ensures temporal consistency, and the refinement and symmetry constraints improve structural plausibility and stability.
Results: Extensive experiments conducted on the Human3.6M and MPI-INF-3DHP datasets demonstrate that PoseRL-Net outperforms existing state-of-the-art models on key metrics such as MPIPE and P-MPIPE, showcasing superior performance across various pose recognition tasks.
Conclusion: PoseRL-Net not only improves pose estimation accuracy but also provides crucial support for intelligent decision-making and motion planning in robots operating in dynamic and complex scenarios, offering significant practical value for collaborative robotics.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.