I-Hsuan Kao, Junyu Tang, Gabriel Calderon Ortiz, Menglin Zhu, Sean Yuan, Rahul Rao, Jiahan Li, James H. Edgar, Jiaqiang Yan, David G. Mandrus, Kenji Watanabe, Takashi Taniguchi, Jinwoo Hwang, Ran Cheng, Jyoti Katoch, Simranjeet Singh
{"title":"Unconventional unidirectional magnetoresistance in heterostructures of a topological semimetal and a ferromagnet","authors":"I-Hsuan Kao, Junyu Tang, Gabriel Calderon Ortiz, Menglin Zhu, Sean Yuan, Rahul Rao, Jiahan Li, James H. Edgar, Jiaqiang Yan, David G. Mandrus, Kenji Watanabe, Takashi Taniguchi, Jinwoo Hwang, Ran Cheng, Jyoti Katoch, Simranjeet Singh","doi":"10.1038/s41563-025-02175-0","DOIUrl":null,"url":null,"abstract":"<p>Unidirectional magnetoresistance (UMR) in a bilayer heterostructure, consisting of a spin-source material and a magnetic layer, refers to a change in the longitudinal resistance on the reversal of magnetization and originates from the interaction of non-equilibrium spin accumulation and magnetization at the interface. Since the spin polarization of an electric-field-induced non-equilibrium spin accumulation in conventional spin-source materials is restricted to be in the film plane, the ensuing UMR can only respond to the in-plane component of magnetization. However, magnets with perpendicular magnetic anisotropy are highly desired for magnetic memory and spin-logic devices, whereas the electrical read-out of perpendicular magnetic anisotropy magnets through UMR is critically missing. Here we report the discovery of an unconventional UMR in the heterostructures of a topological semimetal (WTe<sub>2</sub>) and a perpendicular magnetic anisotropy ferromagnetic insulator (Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub>), which allows to electrically read the up and down magnetic states of the Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub> layer through longitudinal resistance measurements.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"214 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02175-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Unidirectional magnetoresistance (UMR) in a bilayer heterostructure, consisting of a spin-source material and a magnetic layer, refers to a change in the longitudinal resistance on the reversal of magnetization and originates from the interaction of non-equilibrium spin accumulation and magnetization at the interface. Since the spin polarization of an electric-field-induced non-equilibrium spin accumulation in conventional spin-source materials is restricted to be in the film plane, the ensuing UMR can only respond to the in-plane component of magnetization. However, magnets with perpendicular magnetic anisotropy are highly desired for magnetic memory and spin-logic devices, whereas the electrical read-out of perpendicular magnetic anisotropy magnets through UMR is critically missing. Here we report the discovery of an unconventional UMR in the heterostructures of a topological semimetal (WTe2) and a perpendicular magnetic anisotropy ferromagnetic insulator (Cr2Ge2Te6), which allows to electrically read the up and down magnetic states of the Cr2Ge2Te6 layer through longitudinal resistance measurements.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.