{"title":"Selective promotion of sensory innervation–mediated immunoregulation for tissue repair","authors":"Kaicheng Xu, Kaile Wu, Liang Chen, Yubin Zhao, Hengyuan Li, Nong Lin, Zhaoming Ye, Jianbin Xu, Donghua Huang, Xin Huang","doi":"10.1126/sciadv.ads9581","DOIUrl":null,"url":null,"abstract":"Sensory innervation triggers the regenerative response after injury. However, dysfunction and impairment of sensory nerves, accompanied by excessive inflammation impede tissue regeneration. Consequently, specific induction of sensory innervation to mediate immunoregulation becomes a promising therapeutic approach. Herein, we developed a cell/drug-free strategy to selectively boost endogenous sensory innervation to harness immune responses for promoting tissue rehabilitation. Specifically, a dual-functional phage was constructed with a sensory nerve–homing peptide and a β-subunit of nerve growth factor (β-NGF)–binding peptide. These double-displayed phages captured endogenic β-NGF and localized to sensory nerves to promote sensory innervation. Furthermore, regarding bone regeneration, phage-loaded hydrogels achieved rapid sensory nerve ingrowth in bone defect areas. Mechanistically, sensory neurotization facilitated M2 polarization of macrophages through the Sema3A/XIAP/PAX6 pathway, thus decreasing the M1/M2 ratio to induce the dissipation of local inflammation. Collectively, these findings highlight the essential role of sensory innervation in manipulating inflammation and provide a conceptual framework based on neuroimmune interactions for promoting tissue regeneration.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"90 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads9581","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sensory innervation triggers the regenerative response after injury. However, dysfunction and impairment of sensory nerves, accompanied by excessive inflammation impede tissue regeneration. Consequently, specific induction of sensory innervation to mediate immunoregulation becomes a promising therapeutic approach. Herein, we developed a cell/drug-free strategy to selectively boost endogenous sensory innervation to harness immune responses for promoting tissue rehabilitation. Specifically, a dual-functional phage was constructed with a sensory nerve–homing peptide and a β-subunit of nerve growth factor (β-NGF)–binding peptide. These double-displayed phages captured endogenic β-NGF and localized to sensory nerves to promote sensory innervation. Furthermore, regarding bone regeneration, phage-loaded hydrogels achieved rapid sensory nerve ingrowth in bone defect areas. Mechanistically, sensory neurotization facilitated M2 polarization of macrophages through the Sema3A/XIAP/PAX6 pathway, thus decreasing the M1/M2 ratio to induce the dissipation of local inflammation. Collectively, these findings highlight the essential role of sensory innervation in manipulating inflammation and provide a conceptual framework based on neuroimmune interactions for promoting tissue regeneration.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.