{"title":"Eliminating nonuniform geometric effects for long-term stable electrochemical extraction of high-purity titanium","authors":"Zhiyuan Li, Shuqiang Jiao, Jun Zhu, Shijie Li, Zhaoliang Qu, Xiaodong Chen, Qi Wang, Shanyan Huang, Hao-Sen Chen, Wei-Li Song, Yingjun Liu, Dongbai Sun, Hongmin Zhu, Daining Fang","doi":"10.1126/sciadv.ads7083","DOIUrl":null,"url":null,"abstract":"Electrorefining of low-grade titanium is one of the strategies for achieving high-purity titanium. However, the presence of nonuniform geometric effects would be induced to impact the nonuniform geometric distribution of overpotential, leading to impurity dissolution and nonuniform Ti deposition. Here, in situ high-temperature characterizations on the molten salt electrorefining process are applied to establish an anodic dissolution principle for quantitatively evaluating nonuniform geometric effects of electrode. For eliminating the nonuniform geometric effects, coaxial anode-cathode configurations are designed to promote the nonuniform anodic dissolution and nonuniform cathodic deposition. Consequently, the geometric uniformity of titanium products on the cathodes is substantially enhanced, and thus, long-term stable electrorefining process (~12 hours, ~330% increment compared to the electrode of reference configuration) and highly purified titanium products (99.2%) are achieved.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"20 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads7083","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electrorefining of low-grade titanium is one of the strategies for achieving high-purity titanium. However, the presence of nonuniform geometric effects would be induced to impact the nonuniform geometric distribution of overpotential, leading to impurity dissolution and nonuniform Ti deposition. Here, in situ high-temperature characterizations on the molten salt electrorefining process are applied to establish an anodic dissolution principle for quantitatively evaluating nonuniform geometric effects of electrode. For eliminating the nonuniform geometric effects, coaxial anode-cathode configurations are designed to promote the nonuniform anodic dissolution and nonuniform cathodic deposition. Consequently, the geometric uniformity of titanium products on the cathodes is substantially enhanced, and thus, long-term stable electrorefining process (~12 hours, ~330% increment compared to the electrode of reference configuration) and highly purified titanium products (99.2%) are achieved.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.