Clay minerals and the stability of organic carbon in suspension along coastal to offshore transects

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2025-03-08 DOI:10.1016/j.gca.2025.03.003
Michael Fettweis, Saumya Silori, Rieko Adriaens, Xavier Desmit
{"title":"Clay minerals and the stability of organic carbon in suspension along coastal to offshore transects","authors":"Michael Fettweis, Saumya Silori, Rieko Adriaens, Xavier Desmit","doi":"10.1016/j.gca.2025.03.003","DOIUrl":null,"url":null,"abstract":"Particulate (POC) and dissolved organic carbon (DOC) concentration, clay mineral content and composition and the suspended particulate matter (SPM) concentration have been analyzed in water samples taken along transects from the high turbid nearshore to the low turbid offshore on the North Sea shelf. The suspended POC has been classified into a mineral-associated (POC<ce:inf loc=\"post\">mineral</ce:inf>), a slowly degrading (POC<ce:inf loc=\"post\">slow</ce:inf>) and a fresh fraction (POC<ce:inf loc=\"post\">fresh</ce:inf>). The POC<ce:inf loc=\"post\">mineral</ce:inf> has been estimated based on the clay mineral composition and on literature data of the mineral specific surface area per g and the OC content per specific surface area. It consists of organic molecules adsorbed onto mineral surfaces and is thereby the most refractory fraction. The POC<ce:inf loc=\"post\">fresh</ce:inf> content (% of POC<ce:inf loc=\"post\">fresh</ce:inf> in SPM) has been calculated using the semi-empirical POC-SPM model of Fettweis et al. (2022) and is intrinsically labile. The POC<ce:inf loc=\"post\">slow</ce:inf> content is refractory with variable rates of degradation. The total POC content of the SPM was between 2 and 11%, from which about 0.3–6.6% (0.1–2.1%) was POC<ce:inf loc=\"post\">fresh</ce:inf> in spring (resp., winter). The POC<ce:inf loc=\"post\">mineral</ce:inf> content was between 0.4% and 1.1% and decreased towards the offshore, meaning that the POC offshore is less refractory than nearshore. The organic molecules adsorbed onto clay minerals, are dynamically exchanging with the DOC, and thus influencing its fate and concentration. However this process is not sufficient to explain the increasing POC/DOC ratio with increasing SPM concentration, which is further explained by primary production, advection and diffusion, density gradients and seabed erosion. Our results highlight the difficulty and the necessity of estimating the respective sample-POC and DOC concentrations, fluxes and fates along SPM concentration gradients in coastal zones. This is needed as organo-mineral interactions influence the vertical dynamics and horizontal transport of SPM and have an impact on particles and organic carbon fluxes.","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"183 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2025.03.003","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Particulate (POC) and dissolved organic carbon (DOC) concentration, clay mineral content and composition and the suspended particulate matter (SPM) concentration have been analyzed in water samples taken along transects from the high turbid nearshore to the low turbid offshore on the North Sea shelf. The suspended POC has been classified into a mineral-associated (POCmineral), a slowly degrading (POCslow) and a fresh fraction (POCfresh). The POCmineral has been estimated based on the clay mineral composition and on literature data of the mineral specific surface area per g and the OC content per specific surface area. It consists of organic molecules adsorbed onto mineral surfaces and is thereby the most refractory fraction. The POCfresh content (% of POCfresh in SPM) has been calculated using the semi-empirical POC-SPM model of Fettweis et al. (2022) and is intrinsically labile. The POCslow content is refractory with variable rates of degradation. The total POC content of the SPM was between 2 and 11%, from which about 0.3–6.6% (0.1–2.1%) was POCfresh in spring (resp., winter). The POCmineral content was between 0.4% and 1.1% and decreased towards the offshore, meaning that the POC offshore is less refractory than nearshore. The organic molecules adsorbed onto clay minerals, are dynamically exchanging with the DOC, and thus influencing its fate and concentration. However this process is not sufficient to explain the increasing POC/DOC ratio with increasing SPM concentration, which is further explained by primary production, advection and diffusion, density gradients and seabed erosion. Our results highlight the difficulty and the necessity of estimating the respective sample-POC and DOC concentrations, fluxes and fates along SPM concentration gradients in coastal zones. This is needed as organo-mineral interactions influence the vertical dynamics and horizontal transport of SPM and have an impact on particles and organic carbon fluxes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
Mechanism of mineral adsorption enhancing the reduction of hexavalent chromium by natural organic matter Exogenous iron mitigates photo-facilitation of soil organic matter Abiotic and biotic transformation of petroleum hydrocarbons coupled with redox cycling of structural iron in clay mineral Planktic foraminifera record the succession of anaerobic metabolisms in particle microenvironments across a pelagic oxygen gradient Clay minerals and the stability of organic carbon in suspension along coastal to offshore transects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1