Experimental determination of hydrogen isotopic equilibrium in the system H2O(l)-H2(g) from 3 to 90 °C

IF 4.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geochimica et Cosmochimica Acta Pub Date : 2025-02-28 DOI:10.1016/j.gca.2025.02.029
Flora Hochscheid, Andrew C. Turner, Noam Lotem, Markus Bill, Daniel A. Stolper
{"title":"Experimental determination of hydrogen isotopic equilibrium in the system H2O(l)-H2(g) from 3 to 90 °C","authors":"Flora Hochscheid, Andrew C. Turner, Noam Lotem, Markus Bill, Daniel A. Stolper","doi":"10.1016/j.gca.2025.02.029","DOIUrl":null,"url":null,"abstract":"Molecular hydrogen (H<ce:inf loc=\"post\">2</ce:inf>) is found in a variety of settings on and in the Earth from low-temperature sediments to hydrothermal vents, and is actively being considered as an energy resource for the transition to a green energy future. The hydrogen isotopic composition of H<ce:inf loc=\"post\">2</ce:inf>, given as D/H ratios or δD, varies in nature by hundreds of per mil from ∼−800 ‰ in hydrothermal and sedimentary systems to ∼+450 ‰ in the stratosphere. This range reflects a variety of processes, including kinetic isotope effects associated with formation and destruction and equilibration with water, the latter proceeding at fast (order year) timescales at low temperatures (&lt;100 °C). At isotopic equilibrium, the D/H fractionation factor between liquid water and hydrogen (<ce:sup loc=\"post\">D</ce:sup>α<ce:inf loc=\"post\">H2O(l)-H2(g)</ce:inf>) is a function of temperature and can thus be used as a geothermometer for H<ce:inf loc=\"post\">2</ce:inf> formation or re-equilibration temperatures. Multiple studies have produced theoretical calculations for hydrogen isotopic equilibrium between H<ce:inf loc=\"post\">2</ce:inf> and water vapor. However, only three published experimental calibrations used in geochemistry exist for the H<ce:inf loc=\"post\">2</ce:inf>O-H<ce:inf loc=\"post\">2</ce:inf> system: two between 51 and 742 °C for H<ce:inf loc=\"post\">2</ce:inf>O<ce:inf loc=\"post\">(g)</ce:inf>-H<ce:inf loc=\"post\">2(g)</ce:inf> (<ce:cross-refs ref>Suess, 1949; Cerrai et al., 1954</ce:cross-refs>), and one in the H<ce:inf loc=\"post\">2</ce:inf>O<ce:inf loc=\"post\">(l)</ce:inf>-H<ce:inf loc=\"post\">2(g)</ce:inf> system for temperatures &lt;100 °C (<ce:cross-ref ref>Rolston et al., 1976</ce:cross-ref>). Despite these calibrations existing, there is uncertainty on their accuracy at low temperatures (&lt;100 °C; e.g., <ce:cross-ref ref>Horibe and Craig, 1995</ce:cross-ref>).","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"61 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.gca.2025.02.029","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular hydrogen (H2) is found in a variety of settings on and in the Earth from low-temperature sediments to hydrothermal vents, and is actively being considered as an energy resource for the transition to a green energy future. The hydrogen isotopic composition of H2, given as D/H ratios or δD, varies in nature by hundreds of per mil from ∼−800 ‰ in hydrothermal and sedimentary systems to ∼+450 ‰ in the stratosphere. This range reflects a variety of processes, including kinetic isotope effects associated with formation and destruction and equilibration with water, the latter proceeding at fast (order year) timescales at low temperatures (<100 °C). At isotopic equilibrium, the D/H fractionation factor between liquid water and hydrogen (DαH2O(l)-H2(g)) is a function of temperature and can thus be used as a geothermometer for H2 formation or re-equilibration temperatures. Multiple studies have produced theoretical calculations for hydrogen isotopic equilibrium between H2 and water vapor. However, only three published experimental calibrations used in geochemistry exist for the H2O-H2 system: two between 51 and 742 °C for H2O(g)-H2(g) (Suess, 1949; Cerrai et al., 1954), and one in the H2O(l)-H2(g) system for temperatures <100 °C (Rolston et al., 1976). Despite these calibrations existing, there is uncertainty on their accuracy at low temperatures (<100 °C; e.g., Horibe and Craig, 1995).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
期刊最新文献
Mechanism of mineral adsorption enhancing the reduction of hexavalent chromium by natural organic matter Exogenous iron mitigates photo-facilitation of soil organic matter Abiotic and biotic transformation of petroleum hydrocarbons coupled with redox cycling of structural iron in clay mineral Planktic foraminifera record the succession of anaerobic metabolisms in particle microenvironments across a pelagic oxygen gradient Clay minerals and the stability of organic carbon in suspension along coastal to offshore transects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1