Unveiling the Dynamic Patterns and Driving Forces of Soil Organic Carbon in Chinese Croplands From 1980 to 2020

IF 3.6 2区 农林科学 Q2 ENVIRONMENTAL SCIENCES Land Degradation & Development Pub Date : 2025-03-20 DOI:10.1002/ldr.5587
Junchen Ai, Zipeng Zhang, Chenglin Yang, Jinhua Cao, Zhiran Zhou, Xiangyu Ge, Xiangyue Chen, Jingzhe Wang
{"title":"Unveiling the Dynamic Patterns and Driving Forces of Soil Organic Carbon in Chinese Croplands From 1980 to 2020","authors":"Junchen Ai, Zipeng Zhang, Chenglin Yang, Jinhua Cao, Zhiran Zhou, Xiangyu Ge, Xiangyue Chen, Jingzhe Wang","doi":"10.1002/ldr.5587","DOIUrl":null,"url":null,"abstract":"Soil organic carbon (SOC) in cropland is a critical component of the global carbon cycle, representing the most dynamic segment of the carbon pool, and is vital to addressing both “dual-carbon” goals and food security challenges. However, the current research on SOC in China's croplands has limitations in timeliness, continuity, and accuracy. This study constructed a machine learning model to assess the spatial–temporal distribution and changes of cropland SOC across China. It maps the annual distribution of cropland SOC in China over the past four decades (1980–2020), leveraging data from 2399 cropland sampling points collected from the second soil census of China and the integration of multi-platforms combined with 22 environmental excoriates. The model's accuracy (<i>r</i> = 0.82) could meet the needs of the analysis and perform reliably in predicting cropland SOC across China, with high uncertainty only in some areas, such as the northeast. The study reveals that while there have been fluctuations in SOC stocks in China's croplands over the years, the overall trend has been upward, increasing at a rate of 0.012 Pg C y<sup>−1</sup>, and generally functions as carbon sinks. Furthermore, the Shapley additive explanations indicate that temperature strongly correlates with SOC in croplands, followed by precipitation and topography. The outcomes of this research provide essential data support for formulating policies on cropland protection, land degradation, and carbon peak strategies in China.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"22 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5587","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil organic carbon (SOC) in cropland is a critical component of the global carbon cycle, representing the most dynamic segment of the carbon pool, and is vital to addressing both “dual-carbon” goals and food security challenges. However, the current research on SOC in China's croplands has limitations in timeliness, continuity, and accuracy. This study constructed a machine learning model to assess the spatial–temporal distribution and changes of cropland SOC across China. It maps the annual distribution of cropland SOC in China over the past four decades (1980–2020), leveraging data from 2399 cropland sampling points collected from the second soil census of China and the integration of multi-platforms combined with 22 environmental excoriates. The model's accuracy (r = 0.82) could meet the needs of the analysis and perform reliably in predicting cropland SOC across China, with high uncertainty only in some areas, such as the northeast. The study reveals that while there have been fluctuations in SOC stocks in China's croplands over the years, the overall trend has been upward, increasing at a rate of 0.012 Pg C y−1, and generally functions as carbon sinks. Furthermore, the Shapley additive explanations indicate that temperature strongly correlates with SOC in croplands, followed by precipitation and topography. The outcomes of this research provide essential data support for formulating policies on cropland protection, land degradation, and carbon peak strategies in China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Land Degradation & Development
Land Degradation & Development 农林科学-环境科学
CiteScore
7.70
自引率
8.50%
发文量
379
审稿时长
5.5 months
期刊介绍: Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on: - what land degradation is; - what causes land degradation; - the impacts of land degradation - the scale of land degradation; - the history, current status or future trends of land degradation; - avoidance, mitigation and control of land degradation; - remedial actions to rehabilitate or restore degraded land; - sustainable land management.
期刊最新文献
Optimizing Mine Land Revegetation: Combining Native and Non‐Native Species for Rapid Biomass Accumulation and Soil Cover In Situ Improvement of Desert Sand and Plant Germination With Multiple Treatment of EICP Combined With ASKG Unveiling the Dynamic Patterns and Driving Forces of Soil Organic Carbon in Chinese Croplands From 1980 to 2020 Landscape Patterns and Drivers of Farmland Evolution in Basin Margin Mountainous Areas—A Case Study of Sichuan Basin, China Characteristics and Prevention Measures of Wind-Sand Disaster Along the Transmission Corridor in Desert Areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1