Antoine Van de Vloet, Lucas Prost-Boxoen, Quinten Bafort, Yunn Thet Paing, Griet Casteleyn, Lucile Jomat, Stéphane D. Lemaire, Olivier De Clerck, Yves Van de Peer
{"title":"Expanding the toolkit for ploidy manipulation in Chlamydomonas reinhardtii","authors":"Antoine Van de Vloet, Lucas Prost-Boxoen, Quinten Bafort, Yunn Thet Paing, Griet Casteleyn, Lucile Jomat, Stéphane D. Lemaire, Olivier De Clerck, Yves Van de Peer","doi":"10.1111/nph.70095","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Whole-genome duplications, widely observed in plant lineages, have significant evolutionary and ecological impacts. Yet, our current understanding of the direct implications of ploidy shifts on short- and long-term plant evolution remains fragmentary, necessitating further investigations across multiple ploidy levels. <i>Chlamydomonas reinhardtii</i> is a valuable model organism with profound potential to study the impact of ploidy increase on the longer term in a laboratory environment. This is partly due to the ability to increase the ploidy level.</li>\n<li>We developed a strategy to engineer ploidy in <i>C. reinhardtii</i> using noninterfering, antibiotic, selectable markers. This approach allows us to induce higher ploidy levels in <i>C. reinhardtii</i> and is applicable to field isolates, which expands beyond specific auxotroph laboratory strains and broadens the genetic diversity of parental haploid strains that can be crossed. We implement flow cytometry for precise measurement of the genome size of strains of different ploidy.</li>\n<li>We demonstrate the creation of diploids, triploids, and tetraploids by engineering North American field isolates, broadening the application of synthetic biology principles in <i>C. reinhardtii</i>. However, our newly formed triploids and tetraploids show signs of rapid aneuploidization.</li>\n<li>Our study greatly facilitates the application of <i>C. reinhardtii</i> to study polyploidy, in both fundamental and applied settings.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"34 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70095","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Whole-genome duplications, widely observed in plant lineages, have significant evolutionary and ecological impacts. Yet, our current understanding of the direct implications of ploidy shifts on short- and long-term plant evolution remains fragmentary, necessitating further investigations across multiple ploidy levels. Chlamydomonas reinhardtii is a valuable model organism with profound potential to study the impact of ploidy increase on the longer term in a laboratory environment. This is partly due to the ability to increase the ploidy level.
We developed a strategy to engineer ploidy in C. reinhardtii using noninterfering, antibiotic, selectable markers. This approach allows us to induce higher ploidy levels in C. reinhardtii and is applicable to field isolates, which expands beyond specific auxotroph laboratory strains and broadens the genetic diversity of parental haploid strains that can be crossed. We implement flow cytometry for precise measurement of the genome size of strains of different ploidy.
We demonstrate the creation of diploids, triploids, and tetraploids by engineering North American field isolates, broadening the application of synthetic biology principles in C. reinhardtii. However, our newly formed triploids and tetraploids show signs of rapid aneuploidization.
Our study greatly facilitates the application of C. reinhardtii to study polyploidy, in both fundamental and applied settings.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.