Controllable distribution of surface modified MIL-53 with ruthenium nanoparticles on nickel foam and its high efficiency electrocatalytic hydrogen evolution

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Dalton Transactions Pub Date : 2025-03-21 DOI:10.1039/d5dt00287g
Yuhang Wang, Gui-Xin Yang, Chao Wang, Hongtao Liu, Xinming Wang, Haijun Pang
{"title":"Controllable distribution of surface modified MIL-53 with ruthenium nanoparticles on nickel foam and its high efficiency electrocatalytic hydrogen evolution","authors":"Yuhang Wang, Gui-Xin Yang, Chao Wang, Hongtao Liu, Xinming Wang, Haijun Pang","doi":"10.1039/d5dt00287g","DOIUrl":null,"url":null,"abstract":"In the development of electrocatalysts that are cost-effective and highly functional, central to this endeavor is the synthesis of materials and the meticulous delineation of their morphology. This article introduces a solvent-thermal method for constructing ruthenium-based electrocatalysts (Ru/MIL-53@NF), distinguished by the in situ generation of ruthenium nanoparticles (NPs) on MIL-53 with notable dispersion. The procedure requires precise control over ruthenium integration, resulting in electrocatalysts with exceptional dispersion properties. Furthermore, the optimally engineered Ru/MIL-53@NF exhibited outstanding electrocatalytic hydrogen evolution performance, registering an overpotential of merely 17 mV at 10 mA·cm-2 and a Tafel slope of 53.7 mV·dec-1, thus outstripping the standard 20 wt% Pt/C benchmark. This research highlights the careful calibration of synthetic parameters to forge ruthenium-based electrocatalysts with both high efficacy and stability.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"22 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00287g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In the development of electrocatalysts that are cost-effective and highly functional, central to this endeavor is the synthesis of materials and the meticulous delineation of their morphology. This article introduces a solvent-thermal method for constructing ruthenium-based electrocatalysts (Ru/MIL-53@NF), distinguished by the in situ generation of ruthenium nanoparticles (NPs) on MIL-53 with notable dispersion. The procedure requires precise control over ruthenium integration, resulting in electrocatalysts with exceptional dispersion properties. Furthermore, the optimally engineered Ru/MIL-53@NF exhibited outstanding electrocatalytic hydrogen evolution performance, registering an overpotential of merely 17 mV at 10 mA·cm-2 and a Tafel slope of 53.7 mV·dec-1, thus outstripping the standard 20 wt% Pt/C benchmark. This research highlights the careful calibration of synthetic parameters to forge ruthenium-based electrocatalysts with both high efficacy and stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
期刊最新文献
Straightforward encapsulation of ultrastable CsPbBr3 PQDs and rare-earth emitters in zeolite for ratiometric temperature sensing and wet fingerprint recognition Controllable distribution of surface modified MIL-53 with ruthenium nanoparticles on nickel foam and its high efficiency electrocatalytic hydrogen evolution Dual Emissive Ytterbium (III) Complexes with π-Conjugated BODIPY-Bipyridine Ligands A difunctional Dy(III)-complex exhibiting single-molecule magnet behaviour and fluorescent cellular-imaging Pt/SnO2/Sb2O4 nanoparticle catalyst embedded in Multi-walled carbon nanotubes as active material for electrochemical hydrogen storage inquiries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1