{"title":"Entropy-driven multi-scale enhancement of energy storage performance in (Bi0.5Na0.5)0.5Ba0.5TiO3 ceramics","authors":"Yue Pan, Yu Zhang, Qinpeng Dong, Jiangping Huang, Xiuli Chen, Xu Li, Lian Deng, Huanfu Zhou","doi":"10.1016/j.jmat.2025.101055","DOIUrl":null,"url":null,"abstract":"The dielectric ceramic capacitor serves as the core energy storage element in the pulsed power system. However, the inability to balance high energy storage density (<em>W</em><sub>rec</sub>) and energy storage efficiency (<em>η</em>) has become a technical challenge limiting the miniaturisation of pulsed power devices. This work proposes an entropy-driven strategy, through introducing Sr(Sc<sub>0.5</sub>Nb<sub>0.5</sub>)O<sub>3</sub> (SSN) as an end-member, to modulate the phase structure and suppress interfacial polarization in the medium entropy matrix, (Bi<sub>0.5</sub>Na<sub>0.5</sub>)<sub>0.5</sub>Ba<sub>0.5</sub>TiO<sub>3</sub> (BN50BT). The introduction of SSN endows BN50BT ceramics with a multiphase structure of <em>P</em>4<em>mm</em> and <em>Pm</em>-3<em>m</em> and successfully establishes a super-paraelectric (SPE) state at room temperature, improving the polarization response. Furthermore, the incorporation of SSN effectively suppresses interfacial polarization and enhances the <em>E</em><sub>b</sub> of the system. Thus, the 0.80[(Bi<sub>0.5</sub>Na<sub>0.5</sub>)<sub>0.5</sub>Ba<sub>0.5</sub>TiO<sub>3</sub>]-0.20Sr(Sc<sub>0.5</sub>Nb<sub>0.5</sub>)O<sub>3</sub> ceramics exhibit a decent <em>W</em><sub>rec</sub> of 6.24 J/cm<sup>3</sup> and a high <em>η</em> of 89.02%, along with remarkable stabilities over a wide frequency range (5–150 Hz) and temperature range (25–140 °C). This work demonstrates that the entropy-driven construction of a multiphase-coexisting SPE state, along with suppressed interfacial polarization, represents a feasible approach to optimizing the energy storage properties of dielectric ceramics.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"34 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2025.101055","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dielectric ceramic capacitor serves as the core energy storage element in the pulsed power system. However, the inability to balance high energy storage density (Wrec) and energy storage efficiency (η) has become a technical challenge limiting the miniaturisation of pulsed power devices. This work proposes an entropy-driven strategy, through introducing Sr(Sc0.5Nb0.5)O3 (SSN) as an end-member, to modulate the phase structure and suppress interfacial polarization in the medium entropy matrix, (Bi0.5Na0.5)0.5Ba0.5TiO3 (BN50BT). The introduction of SSN endows BN50BT ceramics with a multiphase structure of P4mm and Pm-3m and successfully establishes a super-paraelectric (SPE) state at room temperature, improving the polarization response. Furthermore, the incorporation of SSN effectively suppresses interfacial polarization and enhances the Eb of the system. Thus, the 0.80[(Bi0.5Na0.5)0.5Ba0.5TiO3]-0.20Sr(Sc0.5Nb0.5)O3 ceramics exhibit a decent Wrec of 6.24 J/cm3 and a high η of 89.02%, along with remarkable stabilities over a wide frequency range (5–150 Hz) and temperature range (25–140 °C). This work demonstrates that the entropy-driven construction of a multiphase-coexisting SPE state, along with suppressed interfacial polarization, represents a feasible approach to optimizing the energy storage properties of dielectric ceramics.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.