Phonon thermal transport in two-dimensional gallium nitride: Role of higher-order phonon–phonon and phonon–electron scattering

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2025-03-21 DOI:10.1063/5.0256246
Jianshi Sun, Xiangjun Liu, Yucheng Xiong, Yuhang Yao, Xiaolong Yang, Cheng Shao, Renzong Wang, Shouhang Li
{"title":"Phonon thermal transport in two-dimensional gallium nitride: Role of higher-order phonon–phonon and phonon–electron scattering","authors":"Jianshi Sun, Xiangjun Liu, Yucheng Xiong, Yuhang Yao, Xiaolong Yang, Cheng Shao, Renzong Wang, Shouhang Li","doi":"10.1063/5.0256246","DOIUrl":null,"url":null,"abstract":"Two-dimensional gallium nitride (2D-GaN) has great potential in power electronics and optoelectronics. Heat dissipation is a critical issue for these applications of 2D-GaN. Previous studies have shown that higher-order phonon–phonon scattering has extremely strong effects on the lattice thermal conductivity (κlat) of 2D-GaN, with the fourth-order interatomic force constants (4th-IFCs) calculated using experienced atomic displacement in the finite difference method. In this work, it is found that the 4th-IFCs of 2D-GaN are quite sensitive to atomic displacement in the finite difference method. The effects of the four-phonon scattering can be severely overestimated with non-convergent 4th-IFCs. The κlat from three-phonon scattering is reduced by 65.6% due to four-phonon scattering. The reflection symmetry allows significantly more four-phonon processes than three-phonon processes. It was previously thought the electron–phonon interactions have significant effects on the κlat of two-dimensional materials. However, the effects of electron–phonon interactions on the κlat of both n-type and p-type 2D-GaN at high charge carrier concentrations can be neglected due to the few phonon–electron scattering channels and the relatively strong four-phonon scattering.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"34 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0256246","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional gallium nitride (2D-GaN) has great potential in power electronics and optoelectronics. Heat dissipation is a critical issue for these applications of 2D-GaN. Previous studies have shown that higher-order phonon–phonon scattering has extremely strong effects on the lattice thermal conductivity (κlat) of 2D-GaN, with the fourth-order interatomic force constants (4th-IFCs) calculated using experienced atomic displacement in the finite difference method. In this work, it is found that the 4th-IFCs of 2D-GaN are quite sensitive to atomic displacement in the finite difference method. The effects of the four-phonon scattering can be severely overestimated with non-convergent 4th-IFCs. The κlat from three-phonon scattering is reduced by 65.6% due to four-phonon scattering. The reflection symmetry allows significantly more four-phonon processes than three-phonon processes. It was previously thought the electron–phonon interactions have significant effects on the κlat of two-dimensional materials. However, the effects of electron–phonon interactions on the κlat of both n-type and p-type 2D-GaN at high charge carrier concentrations can be neglected due to the few phonon–electron scattering channels and the relatively strong four-phonon scattering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Investigation on the structural and electronic property of monoclinic Al2O3/β-Ga2O3 superlattice with varying layer periods Phonon thermal transport in two-dimensional gallium nitride: Role of higher-order phonon–phonon and phonon–electron scattering Effect of core–shell structure on magnetic properties and subsequent grain boundary diffusion in the Ce-rich dual main phase magnets Low-temperature growth of epitaxial BaTiO3 thin films with significant electro-optic coefficients Steady-state transition of buckled nano graphite sheets in vibration processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1