{"title":"Large out-of-plane piezoelectric response of ferromagnetic monolayer MoXF (X=S, Se): First principles predictions","authors":"Shiyu Xiao, Songli Dai, Furong Xu, Heng Wang, Zhigang Yu, Zean Tian","doi":"10.1063/5.0255746","DOIUrl":null,"url":null,"abstract":"With both piezoelectric and ferromagnetic states, two-dimensional (2D) materials have garnered significant interest due to their immense potential in the field of spintronic devices. In this paper, the stability, electronic structure, piezoelectric properties, and magnetic characteristics of 2D piezoelectric ferromagnetic semiconductor MoXF (X = S, Se) monolayers were systematically investigated through first-principles calculations and Monte Carlo simulations. It is found that both MoSF and MoSeF are stable intrinsic ferromagnetic semiconductors and exhibit excellent out-of-plane piezoelectric coefficients (d31) of 1.05 and 1.40 pm/V, respectively, which surpass most 2D materials. They also possess out-of-plane magnetic anisotropy energy and high Curie temperatures (Tc, 227 and 210 K, respectively). In addition, biaxial strain has a significant effect on the piezoelectric properties and magnetic properties of MoSeF monolayers, which can enhance the application potential of the material. The findings suggest that MoXF monolayers hold tremendous potential for multifunctional semiconductor spintronic applications.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"24 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0255746","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
With both piezoelectric and ferromagnetic states, two-dimensional (2D) materials have garnered significant interest due to their immense potential in the field of spintronic devices. In this paper, the stability, electronic structure, piezoelectric properties, and magnetic characteristics of 2D piezoelectric ferromagnetic semiconductor MoXF (X = S, Se) monolayers were systematically investigated through first-principles calculations and Monte Carlo simulations. It is found that both MoSF and MoSeF are stable intrinsic ferromagnetic semiconductors and exhibit excellent out-of-plane piezoelectric coefficients (d31) of 1.05 and 1.40 pm/V, respectively, which surpass most 2D materials. They also possess out-of-plane magnetic anisotropy energy and high Curie temperatures (Tc, 227 and 210 K, respectively). In addition, biaxial strain has a significant effect on the piezoelectric properties and magnetic properties of MoSeF monolayers, which can enhance the application potential of the material. The findings suggest that MoXF monolayers hold tremendous potential for multifunctional semiconductor spintronic applications.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.