A facile and green one-step synthesis of Ag/reduced graphene oxide and its application in catalysts and SERS†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2025-03-21 DOI:10.1039/D5RA00001G
Yanling Jia and Ke Zhang
{"title":"A facile and green one-step synthesis of Ag/reduced graphene oxide and its application in catalysts and SERS†","authors":"Yanling Jia and Ke Zhang","doi":"10.1039/D5RA00001G","DOIUrl":null,"url":null,"abstract":"<p >Herein, we present a facile one-step approach for synthesizing Ag/reduced graphene oxide (Ag–rGO) through synchronous reduction and <em>in situ</em> coagulation of graphene oxide (GO) and silver nitrate (AgNO<small><sub>3</sub></small>) under a nitrogen atmosphere. In this process, GO serves as the carrier and template, AgNO<small><sub>3</sub></small> as the precursor, and rutin functions both as the reducing and stabilizing agent. The Ag–rGO nanocomposite is synthesized using an eco-friendly method, where spherical silver nanoparticles are randomly dispersed on the surface of reduced graphene oxide (rGO). This nanocomposite exhibits excellent catalytic activity for degrading methylene blue (MB) and demonstrates good surface-enhanced Raman scattering (SERS) activity as a SERS substrate. It was found that 3 mg Ag–rGO attained a decolorization rate of 96% within merely 9 minutes, with a corresponding reaction rate constant (<em>k</em>) of 0.362 min<small><sup>−1</sup></small>. SERS detection of R6G also exhibited good performance in terms of detection limits in the order of 10<small><sup>−7</sup></small> M, an enhancement factor of 3.03 × 10<small><sup>5</sup></small>, and high reproducibility (the maximum intensity deviation &lt; 7.01%). The excellent performance can be attributed to the decreased size of Ag on the nanocomposite and the larger specific surface area achieved through the <em>in situ</em> synchronous reduction and coagulation method. Additionally, the <em>in situ</em> enrichment effect and superior electron transfer efficiency further enhance the catalytic performance of the nanocomposite, and the synergistic effect of chemical enhancement and electromagnetic enhancement contribute to the good Raman enhancement effect. The effects of reaction parameters such as time and varying reactant ratios on the catalytic and SERS activities of the nanocomposite were also investigated. These findings indicate the potential ability of the Ag–rGO for practical environmental monitoring and treatment applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 11","pages":" 8764-8776"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00001g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00001g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we present a facile one-step approach for synthesizing Ag/reduced graphene oxide (Ag–rGO) through synchronous reduction and in situ coagulation of graphene oxide (GO) and silver nitrate (AgNO3) under a nitrogen atmosphere. In this process, GO serves as the carrier and template, AgNO3 as the precursor, and rutin functions both as the reducing and stabilizing agent. The Ag–rGO nanocomposite is synthesized using an eco-friendly method, where spherical silver nanoparticles are randomly dispersed on the surface of reduced graphene oxide (rGO). This nanocomposite exhibits excellent catalytic activity for degrading methylene blue (MB) and demonstrates good surface-enhanced Raman scattering (SERS) activity as a SERS substrate. It was found that 3 mg Ag–rGO attained a decolorization rate of 96% within merely 9 minutes, with a corresponding reaction rate constant (k) of 0.362 min−1. SERS detection of R6G also exhibited good performance in terms of detection limits in the order of 10−7 M, an enhancement factor of 3.03 × 105, and high reproducibility (the maximum intensity deviation < 7.01%). The excellent performance can be attributed to the decreased size of Ag on the nanocomposite and the larger specific surface area achieved through the in situ synchronous reduction and coagulation method. Additionally, the in situ enrichment effect and superior electron transfer efficiency further enhance the catalytic performance of the nanocomposite, and the synergistic effect of chemical enhancement and electromagnetic enhancement contribute to the good Raman enhancement effect. The effects of reaction parameters such as time and varying reactant ratios on the catalytic and SERS activities of the nanocomposite were also investigated. These findings indicate the potential ability of the Ag–rGO for practical environmental monitoring and treatment applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Porous organic polymers for selective enrichment of trace Cu(ii) in food and water samples† Copper-promoted oxidative mono- and di-bromination of 8-aminoquinoline amides with HBr and DMSO† Integration of the evaporable spin-crossover complex [Fe(HB(1,2,4-triazol-1-yl)3)2] into organic field-effect transistors: towards multifunctional OFET devices† Synthesis of nanoscale surfactant-encapsulated silica-supported polyoxometalate [Si/AlO2]@[PWZn]@CTAB and its catalytic application in the oxidation of alcohols† A facile and green one-step synthesis of Ag/reduced graphene oxide and its application in catalysts and SERS†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1