Negar Sabouhanian, Jacek Lipkowski and Aicheng Chen
{"title":"Unveiling the potential of bismuth-based catalysts for electrochemical CO2 reduction","authors":"Negar Sabouhanian, Jacek Lipkowski and Aicheng Chen","doi":"10.1039/D4IM00126E","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical CO<small><sub>2</sub></small> reduction has favorable industrial relevance due to its integrability with renewable energies and controllable product generation. Bismuth-based catalysts have emerged as promising candidates in this regard due to their intriguing electrochemical properties and cost-effectiveness. This review focuses on recent advances in bismuth-based catalysts for the electrochemical reduction of CO<small><sub>2</sub></small>, including synthesis methods and approaches for performance improvements. Insights into product formations using Bi-based catalysts are also presented, where <em>in situ</em> FTIR and Raman spectroscopic studies are highlighted to understand the structural evolution of the catalysts and to decipher the mechanisms of CO<small><sub>2</sub></small> reduction. Further, recent progress of electrochemical CO<small><sub>2</sub></small> reduction from an industrial perspective and strategies for further development of the bismuth-based catalysts with high activity, selectivity and stability towards practical applications are discussed.</p><p>Keywords: Electrochemical CO<small><sub>2</sub></small> reduction; Bismuth; Nanomaterials; Electrocatalysts; <em>In situ</em> spectroscopy.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 131-150"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00126e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/im/d4im00126e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical CO2 reduction has favorable industrial relevance due to its integrability with renewable energies and controllable product generation. Bismuth-based catalysts have emerged as promising candidates in this regard due to their intriguing electrochemical properties and cost-effectiveness. This review focuses on recent advances in bismuth-based catalysts for the electrochemical reduction of CO2, including synthesis methods and approaches for performance improvements. Insights into product formations using Bi-based catalysts are also presented, where in situ FTIR and Raman spectroscopic studies are highlighted to understand the structural evolution of the catalysts and to decipher the mechanisms of CO2 reduction. Further, recent progress of electrochemical CO2 reduction from an industrial perspective and strategies for further development of the bismuth-based catalysts with high activity, selectivity and stability towards practical applications are discussed.
Keywords: Electrochemical CO2 reduction; Bismuth; Nanomaterials; Electrocatalysts; In situ spectroscopy.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments