Wangcheng Liu, Yaqiong Zhang, Peter Chen, Lin Shao, Yiding Cao, Baoming Zhao, Ellen C. Lee, Xiaojiang Wang and Jinwen Zhang
{"title":"Scalable manufacturing and reprocessing of vitrimerized flexible polyurethane foam (PUF) based on commercial soy polyols†","authors":"Wangcheng Liu, Yaqiong Zhang, Peter Chen, Lin Shao, Yiding Cao, Baoming Zhao, Ellen C. Lee, Xiaojiang Wang and Jinwen Zhang","doi":"10.1039/D4IM00117F","DOIUrl":null,"url":null,"abstract":"<p>As the polyurethane foam (PUF) market, especially in the automotive sector, continues to grow, the environmental impacts of its petrochemical demands and end-of-life waste have motivated the industry to look for more sustainable solutions. This study explores the preparation of recyclable PUFs using commercially available soy polyols (Cargill's BiOH), aiming to enable improved thermal reprocessability of flexible PUFs <em>via</em> vitrimer chemistry. A series of “soy-PUFs” was produced by partially substituting petrochemical polyether polyols with 25% or 50% soy polyols in a standard reference formulation. Incorporation of soy polyols resulted in an increase in the stiffness of the resulting foams. Employing a modest amount (∼0.5 wt%) of dibutyltin dilaurate (DBTDL) in the formulations facilitated dynamic covalent bond exchanges in the cross-linked network during a mild “foam-to-sheet” reprocessing process (160 °C), converting malleable PUFs into densified sheet materials (PUS) with proper compactness and mechanical performance (<em>e.g.</em>, tensile modulus = ∼50 MPa). Soy-PUFs demonstrated a modestly enhanced stress relaxation behavior, suggesting adequate reprocessing ability. DMA results demonstrated the phenomenon of forming an “intermediate” region between the hard and soft domains of PUSs after reprocessing.</p><p>Keywords: Polyurethane foam; Soybean oil; Polyols; Vitrimer chemistry; Reprocessing; Recycling.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 231-245"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00117f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/im/d4im00117f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As the polyurethane foam (PUF) market, especially in the automotive sector, continues to grow, the environmental impacts of its petrochemical demands and end-of-life waste have motivated the industry to look for more sustainable solutions. This study explores the preparation of recyclable PUFs using commercially available soy polyols (Cargill's BiOH), aiming to enable improved thermal reprocessability of flexible PUFs via vitrimer chemistry. A series of “soy-PUFs” was produced by partially substituting petrochemical polyether polyols with 25% or 50% soy polyols in a standard reference formulation. Incorporation of soy polyols resulted in an increase in the stiffness of the resulting foams. Employing a modest amount (∼0.5 wt%) of dibutyltin dilaurate (DBTDL) in the formulations facilitated dynamic covalent bond exchanges in the cross-linked network during a mild “foam-to-sheet” reprocessing process (160 °C), converting malleable PUFs into densified sheet materials (PUS) with proper compactness and mechanical performance (e.g., tensile modulus = ∼50 MPa). Soy-PUFs demonstrated a modestly enhanced stress relaxation behavior, suggesting adequate reprocessing ability. DMA results demonstrated the phenomenon of forming an “intermediate” region between the hard and soft domains of PUSs after reprocessing.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments