{"title":"Polyvinyl alcohol modified plant fiber hydrogel pressure and strain dual-model sensors for biomedical signal detection","authors":"Zhiheng Gu, Ruikang Ma, Xia Chen, Zhaoxing Lin, Yu Yang, Bin Tan, Jiaji Sun, Tingjie Chen","doi":"10.1007/s42114-024-01165-1","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible and stretchable hydrogels have become promising materials for wearable biomedical devices used in continuous health monitoring. A simple and effective ball-milling method is proposed to create conductive, biocompatible polyvinyl alcohol (PVA) hydrogels modified with plant fibers and carbon nanotubes (CNTs) for dual-model wearable devices. The plant fibers and CNTs disperse within the PVA network, providing excellent stretchability (up to 4200% tensile strain), self-healing, and conductivity. These hydrogels can be used for assembling and repairing electrical circuits and serve as sensing elastomers for capacitive strain sensors with high sensitivity, durability, and wide strain range. After high temperature treatment, a conductive and compressible porous PVA/PF@CNT sponge can be obtained from PVA/PF@CNT hydrogel, which can be assembled as piezoresistive pressure sensors with a sensitivity of 0.89 kPa<sup>−1</sup>. These sensors enable real-time monitoring of human biological signals, including joint movements, facial expressions, and throat activity.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01165-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01165-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible and stretchable hydrogels have become promising materials for wearable biomedical devices used in continuous health monitoring. A simple and effective ball-milling method is proposed to create conductive, biocompatible polyvinyl alcohol (PVA) hydrogels modified with plant fibers and carbon nanotubes (CNTs) for dual-model wearable devices. The plant fibers and CNTs disperse within the PVA network, providing excellent stretchability (up to 4200% tensile strain), self-healing, and conductivity. These hydrogels can be used for assembling and repairing electrical circuits and serve as sensing elastomers for capacitive strain sensors with high sensitivity, durability, and wide strain range. After high temperature treatment, a conductive and compressible porous PVA/PF@CNT sponge can be obtained from PVA/PF@CNT hydrogel, which can be assembled as piezoresistive pressure sensors with a sensitivity of 0.89 kPa−1. These sensors enable real-time monitoring of human biological signals, including joint movements, facial expressions, and throat activity.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.