A step gravitational search algorithm for function optimization and STTM’s synchronous feature selection-parameter optimization

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2025-03-21 DOI:10.1007/s10462-025-11193-y
Chaodong Fan, Laurence T. Yang, Leyi Xiao
{"title":"A step gravitational search algorithm for function optimization and STTM’s synchronous feature selection-parameter optimization","authors":"Chaodong Fan,&nbsp;Laurence T. Yang,&nbsp;Leyi Xiao","doi":"10.1007/s10462-025-11193-y","DOIUrl":null,"url":null,"abstract":"<div><p>The support tensor train machine (STTM) can make full use of the correlation of tensor data structures, while the parameter training is inefficient and feature redundancy is large. For this, a step gravitational search algorithm (SGSA) is proposed and used for synchronous feature selection and parameter optimization of STTM in this paper. Since the single population structure of the gravitational search algorithm is difficult to balance exploration and exploitation effectively, a new dual population structure is defined by the step function. Subpopulation Pop1 focuses on exploration, and a <i>K</i><sub><i>best</i></sub><i>-Elite</i> hybrid learning strategy is designed to avoid the rapid decline of exploration ability due to the rapid reduction of the size of <i>K</i><sub><i>best</i></sub> set as well as the gravitational constant <i>G</i>. Subpopulation Pop2 focuses on exploitation, and a position update strategy that integrates Cauchy distribution and Gaussian distribution is designed to make Pop2 always have a certain exploration ability. Finally, use SGSA to solve the synchronous feature selection and parameter optimization problem of STTM (the resulting model is denoted as SGSA-STTM). The algorithm’s optimization performance test results show that SGSA can obtain relatively best results on most test functions compared with other state-of-the-art algorithms. The classification performance test on fMRI datasets shows that SGSA-STTM can remove more than 40% of redundant features on most datasets, which can effectively improve the efficiency of the algorithm, and the classification accuracy for the StarPlus fMRI dataset and the CMU Science 2008 fMRI dataset reached 60 and 70%, respectively.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11193-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11193-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The support tensor train machine (STTM) can make full use of the correlation of tensor data structures, while the parameter training is inefficient and feature redundancy is large. For this, a step gravitational search algorithm (SGSA) is proposed and used for synchronous feature selection and parameter optimization of STTM in this paper. Since the single population structure of the gravitational search algorithm is difficult to balance exploration and exploitation effectively, a new dual population structure is defined by the step function. Subpopulation Pop1 focuses on exploration, and a Kbest-Elite hybrid learning strategy is designed to avoid the rapid decline of exploration ability due to the rapid reduction of the size of Kbest set as well as the gravitational constant G. Subpopulation Pop2 focuses on exploitation, and a position update strategy that integrates Cauchy distribution and Gaussian distribution is designed to make Pop2 always have a certain exploration ability. Finally, use SGSA to solve the synchronous feature selection and parameter optimization problem of STTM (the resulting model is denoted as SGSA-STTM). The algorithm’s optimization performance test results show that SGSA can obtain relatively best results on most test functions compared with other state-of-the-art algorithms. The classification performance test on fMRI datasets shows that SGSA-STTM can remove more than 40% of redundant features on most datasets, which can effectively improve the efficiency of the algorithm, and the classification accuracy for the StarPlus fMRI dataset and the CMU Science 2008 fMRI dataset reached 60 and 70%, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
A step gravitational search algorithm for function optimization and STTM’s synchronous feature selection-parameter optimization Dna coding theory and algorithms Bibliometric analysis of artificial intelligence cyberattack detection models Emrnet: enhanced micro-expression recognition network with attention and distance correlation Context in object detection: a systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1