Eco-friendly RP-HPLC method for simultaneous determination of water-soluble and fat-soluble vitamins in nano-formula and pharmaceutical dosage forms

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY BMC Chemistry Pub Date : 2025-03-20 DOI:10.1186/s13065-025-01441-1
Safaa Hussein Salah El-Din, Amr M. Mahmoud, Amany Morsi
{"title":"Eco-friendly RP-HPLC method for simultaneous determination of water-soluble and fat-soluble vitamins in nano-formula and pharmaceutical dosage forms","authors":"Safaa Hussein Salah El-Din,&nbsp;Amr M. Mahmoud,&nbsp;Amany Morsi","doi":"10.1186/s13065-025-01441-1","DOIUrl":null,"url":null,"abstract":"<div><p>A green method for simultaneous determination of water soluble vitamin (vitamin C) and fat soluble vitamin (vitamin A) was developed using reversed phase high performance liquid chromatography technique. The method succeed to separate the water-soluble and fat-soluble vitamins by isocratic elution using Agilent Zorbax octylsilane column (250 × 4.6 mm, 5 μm) in a short single run. The proposed mobile phase consisted of buffer (10 mM potassium dihydrogen phosphate and 3 mM hexane sulfonic acid sodium salt), pH adjusted to 2.5 using orthophosphoric acid and methanol in a ratio (8:92 v/v) with flow rate 1.0 mL.min<sup>− 1</sup> and UV detection 328 nm for vitamin A and 243 nm for vitamin C in concentration range (0.5–30 IU.mL<sup>− 1</sup>) and (1–60 µg.mL<sup>− 1</sup>), respectively. Accuracy results were 99.49% ± 1.58 for vitamin C and 100.26% ± 1.86 for vitamin A, limit of detection (L.O.D) of vitamin C is 0.3 µg.mL<sup>− 1</sup> while for vitamin A is 0.15 IU.mL<sup>− 1</sup> and limit of quantification (L.O.Q) of vitamin C is 1.0 µg.mL<sup>− 1</sup> while for vitamin A is 0.5 IU.mL<sup>− 1</sup>. Analytical eco scale and green analytical procedure index showed that our proposed method is greener than the reported method. The proposed method validation was performed according to ICH guidelines and the method was applied successfully for determination of vitamin A and vitamin C simultaneously in cosmetic nano-formulation, pharmaceutical dosage form and in pure forms.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-025-01441-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-025-01441-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A green method for simultaneous determination of water soluble vitamin (vitamin C) and fat soluble vitamin (vitamin A) was developed using reversed phase high performance liquid chromatography technique. The method succeed to separate the water-soluble and fat-soluble vitamins by isocratic elution using Agilent Zorbax octylsilane column (250 × 4.6 mm, 5 μm) in a short single run. The proposed mobile phase consisted of buffer (10 mM potassium dihydrogen phosphate and 3 mM hexane sulfonic acid sodium salt), pH adjusted to 2.5 using orthophosphoric acid and methanol in a ratio (8:92 v/v) with flow rate 1.0 mL.min− 1 and UV detection 328 nm for vitamin A and 243 nm for vitamin C in concentration range (0.5–30 IU.mL− 1) and (1–60 µg.mL− 1), respectively. Accuracy results were 99.49% ± 1.58 for vitamin C and 100.26% ± 1.86 for vitamin A, limit of detection (L.O.D) of vitamin C is 0.3 µg.mL− 1 while for vitamin A is 0.15 IU.mL− 1 and limit of quantification (L.O.Q) of vitamin C is 1.0 µg.mL− 1 while for vitamin A is 0.5 IU.mL− 1. Analytical eco scale and green analytical procedure index showed that our proposed method is greener than the reported method. The proposed method validation was performed according to ICH guidelines and the method was applied successfully for determination of vitamin A and vitamin C simultaneously in cosmetic nano-formulation, pharmaceutical dosage form and in pure forms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Chemistry
BMC Chemistry Chemistry-General Chemistry
CiteScore
5.30
自引率
2.20%
发文量
92
审稿时长
27 weeks
期刊介绍: BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family. Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.
期刊最新文献
Enhancing antibiotic detection via an aptasensor: the case of ciprofloxacin Development of UV-Chemometric techniques for resolving the overlapped spectra of aspirin, caffeine and orphenadrine citrate in their combined pharmaceutical dosage form Eco-friendly RP-HPLC method for simultaneous determination of water-soluble and fat-soluble vitamins in nano-formula and pharmaceutical dosage forms Ultra-performance liquid chromatography method for quantitative analysis of nystatin and triamcinolone acetonide in topical creams after in vitro release using franz diffusion cell A stability-indicating potentiometric platform for assaying Metoprolol succinate and felodipine in their tablets and human plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1