Transcriptomics with metabolomics reveals the mechanism of alkaline tolerance in Halomonas alkalicola CICC 11012s

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Archives of Microbiology Pub Date : 2025-03-21 DOI:10.1007/s00203-025-04265-8
Ruina Liu, Geer Lin, Qi Han, Shuaicheng Mu, Shuang Liu, Su Yao, Lei Zhai
{"title":"Transcriptomics with metabolomics reveals the mechanism of alkaline tolerance in Halomonas alkalicola CICC 11012s","authors":"Ruina Liu,&nbsp;Geer Lin,&nbsp;Qi Han,&nbsp;Shuaicheng Mu,&nbsp;Shuang Liu,&nbsp;Su Yao,&nbsp;Lei Zhai","doi":"10.1007/s00203-025-04265-8","DOIUrl":null,"url":null,"abstract":"<div><p>The potential of alkaline-tolerant bacteria as cell factories for the production of functional molecules and bulk chemicals has been increasingly recognized owing to in-depth studies of their metabolic pathways and products combined with their tolerance to alkaline environments. To further explore the cell factory potential of alkaline-tolerant bacteria, it is necessary to systematically analyze and explore the genes and metabolites related to alkaline tolerance. <i>Halomonas alkalicola</i> CICC 11012s is currently the strongest alkaliphile of the genus <i>Halomonas</i>, which can grow at pH 12.5. This study aimed to elucidate the molecular mechanisms underlying the response of <i>H. alkalicola</i> CICC 11012s to alkaline stress, using transcriptomic and metabolomic analyses. The expression of 259 genes and 401 metabolites was significantly altered. Important metabolic pathways included nucleotide, amino acid, and carbohydrate metabolism, as well as membrane transport. Furthermore, an integrative pathway analysis revealed that two pathways, glycine, serine, and threonine metabolism and biotin metabolism, were significantly enriched under high-alkaline conditions (pH 11.0). These findings highlight that deletion of the gene cluster <i>tonB-exbB-exbB2-exbD</i> significantly affects the synthesis of L-aspartate, leading to a decrease in the alkaline tolerance of <i>H. alkalicola</i>.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 5","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04265-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of alkaline-tolerant bacteria as cell factories for the production of functional molecules and bulk chemicals has been increasingly recognized owing to in-depth studies of their metabolic pathways and products combined with their tolerance to alkaline environments. To further explore the cell factory potential of alkaline-tolerant bacteria, it is necessary to systematically analyze and explore the genes and metabolites related to alkaline tolerance. Halomonas alkalicola CICC 11012s is currently the strongest alkaliphile of the genus Halomonas, which can grow at pH 12.5. This study aimed to elucidate the molecular mechanisms underlying the response of H. alkalicola CICC 11012s to alkaline stress, using transcriptomic and metabolomic analyses. The expression of 259 genes and 401 metabolites was significantly altered. Important metabolic pathways included nucleotide, amino acid, and carbohydrate metabolism, as well as membrane transport. Furthermore, an integrative pathway analysis revealed that two pathways, glycine, serine, and threonine metabolism and biotin metabolism, were significantly enriched under high-alkaline conditions (pH 11.0). These findings highlight that deletion of the gene cluster tonB-exbB-exbB2-exbD significantly affects the synthesis of L-aspartate, leading to a decrease in the alkaline tolerance of H. alkalicola.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
期刊最新文献
Unveiling the diversity of gut microbes in green lacewings (Chrysopidae: Neuroptera) and their role as protagonist in nutrition GepA, a GGDEF-EAL protein, regulates biofilm formation and swimming motility in Vibrio parahaemolyticus Transcriptomics with metabolomics reveals the mechanism of alkaline tolerance in Halomonas alkalicola CICC 11012s New insights into iron uptake in Streptococcus mutans: evidence for a role of siderophore-like molecules The importance role of central proline to the antimicrobial potency and selectivity of indolicidin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1