{"title":"Effect of increased cathodic nitrogen levels on anodic COD removal efficiency and bioelectricity generation in microbial fuel cells.","authors":"Sudipa Bhadra, Vijaya Raghavan, Surajbhan Sevda","doi":"10.1007/s11356-025-36294-7","DOIUrl":null,"url":null,"abstract":"<p><p>Simultaneous nitrification and denitrification (SND) of nitrogen-rich wastewater in microbial fuel cells (MFCs) is a new-age technology capable of treating wastewater and concurrently generating bioelectricity. Compared to the conventionally used biological nitrogen elimination processes, SND in MFC is much more energy and cost-efficient because it uses less organic carbon and excludes the nitrified liquid circulation process. In this work with a dual-chambered MFC, carbon-rich synthetic wastewater (CRSW) with an invariable glucose concentration of 2 g/L has been treated in the anodic chamber and nitrogen-rich synthetic wastewater (NRSW) containing 1 g/L, 2 g/L, and 3 g/L ammonium chloride (NH<sub>4</sub>Cl) concentration has been treated in the cathodic chamber and concurrently bioelectricity has been generated. Results showed that CCV-2 with 2 g/L NH<sub>4</sub>Cl load in closed circuit (CCV) mode generated the highest cell voltage, current density, and volumetric power density of 80.56 mV, 23.69 mA/m<sup>2</sup>, and 12.97 mW/m<sup>3</sup>. Removal of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), nitrite, and nitrate was also highest in CCV-2 being 90.25%, 92.18%, 85.78%, and 86.53% respectively. With further increment of NH<sub>4</sub>Cl concentration to 3 g/L concentration there was a decrement in COD, TKN, nitrite, nitrate, and power generation output because TKN concentration higher than 3 g/L slowed down the growth of exoelectrogenic bacteria and decreased organic and nitrogen removal rate along with power output. All experiments in CCV mode gave better results than their counterparts operated in open circuit (OCV) mode. In microbial community structure analysis, the dominant genus was found to be Brevendimonas, Sphingomonadaceae, and Achromobacter in the cathodic chamber treating NRSW.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36294-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneous nitrification and denitrification (SND) of nitrogen-rich wastewater in microbial fuel cells (MFCs) is a new-age technology capable of treating wastewater and concurrently generating bioelectricity. Compared to the conventionally used biological nitrogen elimination processes, SND in MFC is much more energy and cost-efficient because it uses less organic carbon and excludes the nitrified liquid circulation process. In this work with a dual-chambered MFC, carbon-rich synthetic wastewater (CRSW) with an invariable glucose concentration of 2 g/L has been treated in the anodic chamber and nitrogen-rich synthetic wastewater (NRSW) containing 1 g/L, 2 g/L, and 3 g/L ammonium chloride (NH4Cl) concentration has been treated in the cathodic chamber and concurrently bioelectricity has been generated. Results showed that CCV-2 with 2 g/L NH4Cl load in closed circuit (CCV) mode generated the highest cell voltage, current density, and volumetric power density of 80.56 mV, 23.69 mA/m2, and 12.97 mW/m3. Removal of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), nitrite, and nitrate was also highest in CCV-2 being 90.25%, 92.18%, 85.78%, and 86.53% respectively. With further increment of NH4Cl concentration to 3 g/L concentration there was a decrement in COD, TKN, nitrite, nitrate, and power generation output because TKN concentration higher than 3 g/L slowed down the growth of exoelectrogenic bacteria and decreased organic and nitrogen removal rate along with power output. All experiments in CCV mode gave better results than their counterparts operated in open circuit (OCV) mode. In microbial community structure analysis, the dominant genus was found to be Brevendimonas, Sphingomonadaceae, and Achromobacter in the cathodic chamber treating NRSW.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.