Exploring the role of phase change materials in low-temperature solar thermal applications: an extensive overview with challenges and opportunities.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2025-03-21 DOI:10.1007/s11356-025-36239-0
Gopi Vasudevan, Guna Muthuvairavan, Subbarama Kousik Suraparaju, Aman Yadav, Mahendran Samykano, Sendhil Kumar Natarajan
{"title":"Exploring the role of phase change materials in low-temperature solar thermal applications: an extensive overview with challenges and opportunities.","authors":"Gopi Vasudevan, Guna Muthuvairavan, Subbarama Kousik Suraparaju, Aman Yadav, Mahendran Samykano, Sendhil Kumar Natarajan","doi":"10.1007/s11356-025-36239-0","DOIUrl":null,"url":null,"abstract":"<p><p>Solar energy is widely acknowledged as a renewable and environmentally friendly energy source. Efficient storage of heat energy is a crucial challenge in solar thermal applications. Phase change materials (PCMs) have gained prominence due to their unique ability to store and release thermal energy through phase transition. The advantageous characteristic of PCMs is their low melting point, facilitating efficient heat storage and retrieval through latent heat of vaporization. This comprehensive review focuses on selecting suitable PCMs for diverse applications, considering their melting point and thermal properties. PCMs with high heat capacity and excellent solar radiation absorption are favored in solar applications, especially for systems requiring large thermal energy storage capacities. This review article underscores the importance of PCMs in low-temperature (0-120 °C) solar thermal applications such as solar desalination, solar water heaters, solar cookers, solar dryers, solar air heaters, and solar chimneys, emphasizing their role in practical heat storage and release. By carefully selecting PCMs based on melting point and thermal properties, the performance and efficiency of solar thermal systems can be optimized, contributing to a greener and more sustainable future.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36239-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy is widely acknowledged as a renewable and environmentally friendly energy source. Efficient storage of heat energy is a crucial challenge in solar thermal applications. Phase change materials (PCMs) have gained prominence due to their unique ability to store and release thermal energy through phase transition. The advantageous characteristic of PCMs is their low melting point, facilitating efficient heat storage and retrieval through latent heat of vaporization. This comprehensive review focuses on selecting suitable PCMs for diverse applications, considering their melting point and thermal properties. PCMs with high heat capacity and excellent solar radiation absorption are favored in solar applications, especially for systems requiring large thermal energy storage capacities. This review article underscores the importance of PCMs in low-temperature (0-120 °C) solar thermal applications such as solar desalination, solar water heaters, solar cookers, solar dryers, solar air heaters, and solar chimneys, emphasizing their role in practical heat storage and release. By carefully selecting PCMs based on melting point and thermal properties, the performance and efficiency of solar thermal systems can be optimized, contributing to a greener and more sustainable future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Economic feasibility of complementary treatments for reducing pharmaceuticals in metropolitan drinking water in southern Brazil. Effect of increased cathodic nitrogen levels on anodic COD removal efficiency and bioelectricity generation in microbial fuel cells. Exploring the role of phase change materials in low-temperature solar thermal applications: an extensive overview with challenges and opportunities. A novel method for selective lithium recovery from end-of-life LiFePO4 automotive batteries via thermal treatment combined with a leaching process. Enhancing the production of waste chicken fat biodiesel with ethanol improved engine properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1