Leveraging engineered yeast small extracellular vesicles serve as multifunctional platforms for effectively loading methyl salicylate through the "esterase-responsive active loading" strategy.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutics and Biopharmaceutics Pub Date : 2025-03-18 DOI:10.1016/j.ejpb.2025.114696
Tianhao Li, Yun Zhou, Haoran Wang, Junfeng Wang, Rong Lu
{"title":"Leveraging engineered yeast small extracellular vesicles serve as multifunctional platforms for effectively loading methyl salicylate through the \"esterase-responsive active loading\" strategy.","authors":"Tianhao Li, Yun Zhou, Haoran Wang, Junfeng Wang, Rong Lu","doi":"10.1016/j.ejpb.2025.114696","DOIUrl":null,"url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) are a promising vehicle for drug delivery because of their good biocompatibility and nontoxicity. The drug loading and encapsulation efficiencies of them are not satisfactory. This is especially the case when drugs are loaded by co-incubation. In this situation, as the difference in drug concentration between the inside and outside of the membrane of ordinary sEVs decreases, the drugs cannot diffuse efficiently into the inside of the vesicles. As a result, the drug loading efficiency is low. In this study, engineered yeast-derived small extracellular vesicles derived from Pichia pastoris X33 (XPP-sEVs) engineered with carboxylesterase 1 (CES1) were constructed using the \"esterase-responsive active loading\" method, which is based on the concept of prodrug design and guided by the strategy of immobilized enzymes, to improve the loading efficiency of methyl salicylate (MS) to about twice as much. This was achieved by engineering the CES1-contained small extracellular vesicles to catalyze the esterase hydrolysis reaction of MS to establish a continuous MS transmembrane concentration gradient for efficient loading of the active drugs, including methyl salicylate and its hydrolyzed active product salicylic acid. The results showed that the enzyme activity of the CES1-sEVs group finally reached 7.88 ± 0.43 U/mL, and the drug loading efficiency was about doubled. The results of drug release from the engineered extracellular vesicles showed that the release of the drug reached equilibrium around 100 min-2 h, during which there was no sudden release of the MS, and the final amount of the drug released could be increased by 12.34 % compared with the emulsion dosage form of the MS. Overall, the CES1-sEVs prepared in this study significantly improved the drug-loading efficiency of MS without affecting the anti-inflammatory activity of MS. The MS-CES1-sEVs prepared in this study are non-toxic and have a bright application prospect in the treatment of skin inflammation.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114696"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2025.114696","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Small extracellular vesicles (sEVs) are a promising vehicle for drug delivery because of their good biocompatibility and nontoxicity. The drug loading and encapsulation efficiencies of them are not satisfactory. This is especially the case when drugs are loaded by co-incubation. In this situation, as the difference in drug concentration between the inside and outside of the membrane of ordinary sEVs decreases, the drugs cannot diffuse efficiently into the inside of the vesicles. As a result, the drug loading efficiency is low. In this study, engineered yeast-derived small extracellular vesicles derived from Pichia pastoris X33 (XPP-sEVs) engineered with carboxylesterase 1 (CES1) were constructed using the "esterase-responsive active loading" method, which is based on the concept of prodrug design and guided by the strategy of immobilized enzymes, to improve the loading efficiency of methyl salicylate (MS) to about twice as much. This was achieved by engineering the CES1-contained small extracellular vesicles to catalyze the esterase hydrolysis reaction of MS to establish a continuous MS transmembrane concentration gradient for efficient loading of the active drugs, including methyl salicylate and its hydrolyzed active product salicylic acid. The results showed that the enzyme activity of the CES1-sEVs group finally reached 7.88 ± 0.43 U/mL, and the drug loading efficiency was about doubled. The results of drug release from the engineered extracellular vesicles showed that the release of the drug reached equilibrium around 100 min-2 h, during which there was no sudden release of the MS, and the final amount of the drug released could be increased by 12.34 % compared with the emulsion dosage form of the MS. Overall, the CES1-sEVs prepared in this study significantly improved the drug-loading efficiency of MS without affecting the anti-inflammatory activity of MS. The MS-CES1-sEVs prepared in this study are non-toxic and have a bright application prospect in the treatment of skin inflammation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
期刊最新文献
Leveraging engineered yeast small extracellular vesicles serve as multifunctional platforms for effectively loading methyl salicylate through the "esterase-responsive active loading" strategy. Silica-based EGFR-degrading nano-PROTACs for efficient therapy of non-small cell lung cancer. Corrigendum to "Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides" [Eur. J. Pharm. Biopharm. 184 (2023) 13949]. Editorial to 'Bio-material interfaces and Drug Delivery'. Artificial gut Simulator. A scheme to predict intestinal and plasma concentration-time profiles of a weakly basic BCS-II drug, dipyridamole.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1