Silica-based EGFR-degrading nano-PROTACs for efficient therapy of non-small cell lung cancer.

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutics and Biopharmaceutics Pub Date : 2025-03-18 DOI:10.1016/j.ejpb.2025.114699
Lei Fang, Ruixue Zhu, Meijing Li, Junhui Ma, Sijun Fan, Xuelian He, Zhongrui Yang, Yakai Yan, Xiang Ma, Guangya Xiang
{"title":"Silica-based EGFR-degrading nano-PROTACs for efficient therapy of non-small cell lung cancer.","authors":"Lei Fang, Ruixue Zhu, Meijing Li, Junhui Ma, Sijun Fan, Xuelian He, Zhongrui Yang, Yakai Yan, Xiang Ma, Guangya Xiang","doi":"10.1016/j.ejpb.2025.114699","DOIUrl":null,"url":null,"abstract":"<p><p>Proteolysis targeting chimeras (PROTACs) technology is a promising strategy for degrading proteins of interest. Traditional PROTACs, however, often face challenges such as poor solubility, low stability, and off-target toxicity. To address these challenges, we integrated nanotechnology to enhance the delivery of target-protein degraders to the tumor sites, thereby improving their properties. Here, we report silica-based nano-PROTACs (SiPROTACs) that feature multiple ligands on the surface to target and degrade the transmembrane protein epidermal growth factor receptor (EGFR). SiPROTACs, with a diameter of approximately 50 nm, can efficiently bind to EGFR, recruit cereblon (CRBN) to induce EGFR ubiquitination, and facilitate their degradation by proteasomes. In HCC-827 and PC-9 cell lines, SiPROTACs initiated EGFR degradation at a notably low concentration of 50 nM, demonstrating greater efficiency compared to traditional PROTACs. In HCC-827 xenograft tumor-bearing mice, SiPROTACs accumulated at tumor site for at least 48 h and exhibited significant anti-tumor effects in vivo without causing noticeable side effects. These findings suggest a novel approach for the application of PROTACs highlighting their therapeutic potential for the treatment of non-small cell lung cancer (NSCLC).</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114699"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejpb.2025.114699","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteolysis targeting chimeras (PROTACs) technology is a promising strategy for degrading proteins of interest. Traditional PROTACs, however, often face challenges such as poor solubility, low stability, and off-target toxicity. To address these challenges, we integrated nanotechnology to enhance the delivery of target-protein degraders to the tumor sites, thereby improving their properties. Here, we report silica-based nano-PROTACs (SiPROTACs) that feature multiple ligands on the surface to target and degrade the transmembrane protein epidermal growth factor receptor (EGFR). SiPROTACs, with a diameter of approximately 50 nm, can efficiently bind to EGFR, recruit cereblon (CRBN) to induce EGFR ubiquitination, and facilitate their degradation by proteasomes. In HCC-827 and PC-9 cell lines, SiPROTACs initiated EGFR degradation at a notably low concentration of 50 nM, demonstrating greater efficiency compared to traditional PROTACs. In HCC-827 xenograft tumor-bearing mice, SiPROTACs accumulated at tumor site for at least 48 h and exhibited significant anti-tumor effects in vivo without causing noticeable side effects. These findings suggest a novel approach for the application of PROTACs highlighting their therapeutic potential for the treatment of non-small cell lung cancer (NSCLC).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
期刊最新文献
Leveraging engineered yeast small extracellular vesicles serve as multifunctional platforms for effectively loading methyl salicylate through the "esterase-responsive active loading" strategy. Silica-based EGFR-degrading nano-PROTACs for efficient therapy of non-small cell lung cancer. Corrigendum to "Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides" [Eur. J. Pharm. Biopharm. 184 (2023) 13949]. Editorial to 'Bio-material interfaces and Drug Delivery'. Artificial gut Simulator. A scheme to predict intestinal and plasma concentration-time profiles of a weakly basic BCS-II drug, dipyridamole.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1